Contents Page

[() 7= [= 6
U o [T o R 8
(@1 1= R =TT T [(o= 10
A Few Typographical CONVENLIONS ...cuuieeiii i e e e e e 11
p e o110 = = T PR 12
ACKNOWIBAOMENTIS .ot e e e e e e e e e e e e e e e eanns 13

Part |. The Language

(L= 11T Lo TS 7= T (=T o PR 14
0 O 11 T 1< 16
1.2 GIODal Variablesooeeieii e 19
1.3 Some LeXical CONVENLIONS ...cuuiiiiieiiee et e e e e e eeans 20
1.4 The Stand-AloNe INTEIPIEIEEoceeieee e e eaas 22

2 TYPES ANU VAIUES oot e et e e e e et e e e e e e e e e e e e enaees 25
720 1 | P 26
A = ToTo] (Y= 27
2 B N LV T 0 o T 28
p S L1 10 PRSPPI 29
pZA S T 1= o [32
2 I 811 1 36
2.7 Userdata and ThreadScoeeuiiii e e e ees 37

G T (=TT (0] 38
I N 111 T Y] (ol @ o1 7= 1 (o] 39
I = = Lo g P @ 01T =1 (o £ 40
Il Mo o [[or= 1 @ oT=T =1 (0] £ 41

Page 1 of 351

3.4 CONCALENATION ..o e et 43

TSI d (=YoT =0 (=Y o 44

I I 1= o] (ST O Y 1 U [(0] 45

Z Y £ 1 (=] 1 1]] 49
L NSy Lo 0 1= 0 50

4.2 Local Variables and BIOCKScuniiiiiee e e 52

4.3 CONIOL STIUCTUIES et e e e e et e e e e e e eeannas 55
4.3.1IFthen EISE oo 56

4.3.2 WHIIE e 57

LR TRC I =T o == | 58

LRI U [1= o3 (0 59

LR RN CT=Y 1= o T o 61

L oY A=Y L= T Lo H =1 AU o 63
Lo 81110 1 £ 64
5.1 MUIIPIE RESUITS ...oeeeeii et e e e e e e e e eans 66

5.2 Variable Number of ArQUMENES ...eeieeiieeee e 70

NI A F= T (=T N o TU T L= 0] £ 72

SN\ o (=3= T o T YUl ol U1 Vo3 1) 1 £ 74
S O [0 1o U] 77

(SIPZ \\ o] S €1 (o] o 1= | I U T3 1] 81

(SIS e (o o L=l 1= V1 I = 11 84

7 lterators and the GENEIIC TOF ...vuiiiv e e 87
7.1 1terators anNd CIOSUIES ...oeeiiiii e et e e e e e e et eeran e eananns 88

7.2 The Semantics of the GENEIIC fOr .niveiieeeee e 91

PR RS o (= (ST S (=T = 1 (0] £ 93

7.4 lterators With CompPIeX SALE .ovveiee e e 95

ARSI I (V1= (=T =10 £ 97

8 Compilation, Execution, and EITOISuiiiiiiieeeeeeeeee e 99
8.1 The requi I € FUNCHON oiiiiee e e et e e e e e e e e eaaeees 103

T O = (o1 = (o [105

L TR T =t (0] £ 107

8.4 Error Handling and EXCEPLIONS ceeivuieeiiiieeeeee et 110

8.5 Error Messages and TraCebhaCKSuiveiiiiiiii et 112

LS B OTo] (01U (] 1= 114
9.1 COrOULINE BASICS .uuiienieieiieiee et e ettt e et e e e e e e e e e e e ea e e ean e ennns 115

0.2 PIPES AN FILEIS eeeieiie et e e e e e eanas 119

9.3 COroUtiNES S ITEIALOIS .univeiee e e e e e e e e e e e e eaneeans 122

9.4 Non-Preemptive MUltithreading cocvniiiiiiie e 125

Page 2 of 351

10 COoMPIEte EXAMPIES ..o e e e 130

10.1 DAt DESCHPLION oeiieeiieiii et e e e et e e e e e e e e e eaneeeennnas 131
10.2 Markov Chain AlgOrthm ..oeeeeeeeee e 135
Part Il. Tables and Objects
Tt WS (0o (T 138
N = 7S 139
11.2 Matrices and Multi-Dimensional ArraysS cocueeeiveeieeeeeeeeeeee e 140
I B I =T I T £ 142
11.4 Queues and Double QUEUES ceeeiieieeeee e 143
11.5 SetS N0 BAOS covuiiiiiiiiiiiiee e ea 145
SIS (T 1o I =T V)1 {=Y £ 146
12 Data FileS and PEeISISIENCE ...cu.ieeiiiieeee e e e e e e eanas 149
O ST =T 1= [1 o] 152
12.1.1 Saving Tables Without CYCIES oieeiieeee e 154
12.1.2 Saving Tables With CYCIES ... 156
13 Metatables and MetamethodsS ... 159
13.1 Arithmetic MetamethodsS oeee e 160
13.2 Relational MetamethodSs oveiieiieceeeeee e 163
13.3 Library-Defined MetamethodS cooveiiiiiiiiee e 165
13.4 Table-Access MetamethodS oovviiiiiiie e 167
13.4.1 The __index Metamethodccooeieiiieiiiiiiieeeeeeee e, 168
13.4.2 The __newi ndex Metamethodcooeuiiiiiiiiiiieiieeeeeeeees 170
13.4.3 Tables with Default Values oeviieiie e, 171
13.4.4 Tracking Table ACCESSEScoeuuiiieieeeieeee e 173
13.4.5 Read-Only TableS ..o 175
O I TSN = 14T (0 T 0 =Y 1 176
14.1 Accessing Global Variables with Dynamic Namesccoccoevvvvieeivnnenn. 177
14.2 Declaring Global Variablescooe i 180
14.3 Non-Global ENVIFONMENTS ...ceeiieiieeeeeeeeeee et 182
N = (o8 = 1o [T 184
15.1 The BasiC APPIrOACKH ..o 185
T o £177= Vo VTR 187
15.3 Packages and FilESueiieeiiie e 189
15.4 Using the Global Table ... 190
15.5 Other FACITIES ovnieeiiiieee e et e e e e e et e e e e eaneees 193
16 Object-Oriented ProgrammMiNg coeeeeeeeeieeiee e eee e e e e e e e e e eaneeeanans 196
T O 1= 1Y = 199
ST] AT 1= Lo = 201

Page 3 of 351

16.3 MUltIPlE INNEITANCE ..o 203

(R o LY=oV 206
16.5 The Single-Method ApProach ..., 209
A T Ll 1= o [210
17.1 MemMOIZE FUNCLIONS oeeeiiieiiie e et e e e e e e e eeees 212
A ©] o] [=To AN] 011 (= 214
17.3 Reuvisiting Tables with Default Valuescoooveiiviiiiiiiiieeeeee 215

Part Ill. The Standard Libraries
18 The MathematiCal LIDrary ..o e 217
(R RN oI 1= o] [I o = TR 219
(S I AN = YA T4 = 220
19.2 INSert aNd REMOVE ...oeiieeieeeee e e e e e 222
LS TG T Y0 1 223
20 The StING LIBIANY oo e e e et e e e e eaaas 225
20.1 Pattern-MatChing FUNCHIONS ...cenieeiie i e 228
W O A = 11 (=] 1 1 230
P24 O TG G- o) 11 | (= 234
20.4 TrickS Of the TradE ..eeeieeiieeee e e eans 240
A N I =N VO I o = T 246
21.1 The SIMple /O MOAEL ...oneeeeeeeeeeee e e 247
21.2 The Complete /O MOAEl ...oeeeeeeeeeee e 251
21.2.1 A Small Performance TriCKooiviuiiiiiiiiiieeieeeeeeeee e 253
21.2.2 BiNAIY FlES e 254
21.3 Other OperationS ON FIlES ee e 256
22 The Operating SYStEM LIBIary o..ooeeeiii e 257
A N B F (=31 o [I I 0 258
22.2 Other SYSIEM CallS ..cuniieiiiiie e 261
AT I =N D L=] oYU Lo T I o] = 263
23.1 INtrospectiVe FACIlItIES ovueiieeieei e aa e e 264
23.1.1 Accessing Local VariableS ... 267
23.1.2 AcCESSING UPVAIUES ..oeeeieeeeeeeeeeee e 269
A Tl (010 <€ 271
2 TG TN d (0] 11T 272

Part IV. The C API

24 AN OVEIVIEW OFf the C AP e e e e e e 275
24.1 A FIrSt EXQIMPIE oeeieeieeee et e e eaas 277
P A 1 4 L= = (o] 280
24.2.1 Pushing EIEMENLS coveieee e 282

Page 4 of 351

24.2.2 QUEINYING EIEMENTS oo 283

24.2.3 Other Stack OPerationsu.veieiiiieeeee e 285

24.3 Error Handling With the C APl ..ee e 288
24.3.1 Error Handling in Application Codeccocveeiviieiiiieiieeeeeen. 289

24.3.2 Error Handling in Library Codeuvoveeiiiiiieeeeeeeee e 290

25 Extending YOUr APPRHCALIONiieeiiei et e e e e e e e e eaans 291
25.1 Table Manipulationooieiiii e e e e e 294

25.2 Calling LUA FUNCLIONS ... 299

25.3 A Generic Call FUNCLION .ouniie e e eaas 301

A N O 11110 o T O i (o] o 0 1N U = R 304
24 S T N O ol U T 1T 0 305

YA ST O I o] = = 308

27 Techniques for Writing C FUNCHONS oeeiiiiiiiiiie et 311
27.1 Array ManiDUIALIONoeeieeiiee e e e eaas 312

27.2 StriNg ManiPUIALION ..o e e e e e ens 314

27.3 Storing State iN C FUNCLIONS ..cvuniiiiiieeeeee e 318
27.3.1 THE REGISIIY eeeeeeeiee et e e e ees 319

27.3.2 REIEIENCES ..o 321
27.3.3UPVAIUES e 323

28 USEr-DefiNned TYPES IN € oottt ettt e e e e e e e e e e e e e eanas 325
P24 S TR LU Y=Y o = = 326

28.2 MEtalabIES ooeeieee e 329

28.3 ODJECt-OrENIEA ACCESS ..eeniieeiie ettt et e e e e e e e eeaaes 332

PR S R N = VA A o o <1 335

28.5 LIght USEIdata ...ceeniieeiiiieee et e e e e e e ees 337

29 MANAGING RESOUICES ..eeuiieiieei e et e et e e e e e e e e e e et e e et e e eaa e e e e e ran e eannns 338
A I AN B 1| (=T ot (o] VA (=T = (o] 339

29.2 AN XML PAISELieeiiiiieeee e e e e e e e aan e 342

Last update: Fri Feb 11 10:26:52 BRST 2005

I,m sorry , | forgot to delete 5 blank pages !

Page 5 of 351

Programming in Lua

Preface

Preface

Currently, many programming languages are concerned with how to help you write programs with
hundreds of thousands of lines. For that, they offer you packages, namespaces, complex type systems, a
myriad of constructions, and thousands of documentation pages to be studied.

Lua does not try to help you write programs with hundreds of thousands of lines. Instead, Luatriesto
help you solve your problem with only hundreds of lines, or even less. To achieve thisaim, Luarelieson
extensibility, like many other languages. Unlike most other languages, however, Luais easily extended
not only with software written in Luaitself, but also with software written in other languages, such asC
and C++.

Lua was designed, from the beginning, to be integrated with software written in C and other

conventional languages. This duality of languages brings many benefits. Luaisatiny and simple
language, partly because it does not try to do what C is already good for, such as sheer performance, low-
level operations, or interface with third-party software. Luarelies on C for those tasks. What Lua does
offer iswhat C is not good for: agood distance from the hardware, dynamic structures, no redundancies,
ease of testing and debugging. For that, L ua has a safe environment, automatic memory management,
and great facility to handle strings and other kinds of data with dynamic size.

More than being an extensible language, Luais also a glue language. L ua supports a component-based
approach to software development, where we create an application by gluing together existing high-level
components. Usually, these components are written in acompiled, statically typed language, such as C
or C++; Luaisthe glue that we use to compose and connect those components. Usually, the components
(or objects) represent more concrete, low-level concepts (such as widgets and data structures) that are
not subject to many changes during program development and that take the bulk of the CPU time of the
final program. Lua givesthe final shape of the application, which will probably change alot during the
life cycle of the product. However, unlike other glue technologies, Luais afull-fledged language as
well. Therefore, we can use Lua not only to glue components, but also to adapt and reshape them, or
even to create whole new components.

Of course, Luais not the only scripting language around. There are other languages that you can use for
more or less the same purposes, such as Perl, Tcl, Ruby, Forth, and Python. The following features set
Lua apart from these languages; although other languages share some of these features with Lua, no
other language offers asimilar profile:

Page 6 of 351

. Extensibility: Luas extensibility is so remarkable that many people regard Lua not as alanguage,
but as akit for building domain-specific languages. L ua has been designed from scratch to be
extended, both through L ua code and through external C code. As a proof of concept, it
implements most of its own basic functionality through external libraries. It isreally easy to
interface Luawith C/C++ and other languages, such as Fortran, Java, Smalltalk, Ada, and even
with other scripting languages.

. Smplicity: Luaisasimple and small language. It has few (but powerful) concepts. This
simplicity makes Lua easy to learn and contributes for a small implementation. Its complete
distribution (source code, manual, plus binaries for some platforms) fits comfortably in afloppy
disk.

. Efficiency: Lua has a quite efficient implementation. Independent benchmarks show Lua as one
of the fastest languages in the realm of scripting (interpreted) languages.

. Portability: When we talk about portability, we are not talking about running Lua both on
Windows and on Unix platforms. We are talking about running Lua on all platforms we have
ever heard about: NextStep, OS/2, PlayStation Il (Sony), Mac OS-9 and OS X, BeOS, MS-DOS,
IBM mainframes, EPOC, PalmOS, MCF5206eL I TE Evauation Board, RISC OS, plus of course
all flavors of Unix and Windows. The source code for each of these platformsis virtually the
same. Lua does not use conditional compilation to adapt its code to different machines; instead, it
sticks to the standard ANSI (1SO) C. That way, usually you do not need to adapt it to a new
environment: If you have an ANSI C compiler, you just have to compile Lua, out of the box.

A great part of the power of Lua comes from itslibraries. Thisis not by chance. One of the main
strengths of Luaisits extensibility through new types and functions. Many features contribute to this
strength. Dynamic typing allows a great degree of polymorphism. Automatic memory management
simplifiesinterfaces, because there is no need to decide who is responsible for allocating and
deallocating memory, or how to handle overflows. Higher-order functions and anonymous functions
allow a high degree of parametrization, making functions more versatile.

Lua comes with asmall set of standard libraries. When installing Luain a strongly limited environment,
such as embedded processors, it may be wise to choose carefully which libraries you need. Moreover, if
the limitations are hard, it is easy to go inside the libraries source code and choose one by one which
functions should be kept. Remember, however, that Luais rather small (even with all standard libraries)
and in most systems you can use the whole package without any concerns.

Programming in Lua

Page 7 of 351

Programming in Lua

Preface

Audience

Luauserstypically fal into three broad groups. those that use Lua already embedded in an application
program, those that use Lua stand alone, and those that use Lua and C together.

Many people use Lua embedded in an application program, such as CGlLua (for building dynamic Web
pages) or LuaOrb (for accessing CORBA objects). These applications use the Lua-C API to register new
functions, to create new types, and to change the behavior of some language operations, configuring Lua
for their specific domains. Frequently, the users of such applications do not even know that Luaisan
independent language adapted for a particular domain; for instance, CGILua users tend to think of Lua
as alanguage specifically designed for the Web.

Luais useful also as a stand-alone language, mainly for text-processing and one-shot little programs. For
such uses, the main functionality of Lua comes from its standard libraries, which offer pattern matching
and other functions for string handling. We may regard the stand-al one language as the embedding of
Luainto the domain of string and (text) file manipulation.

Finally, there are those programmers that work on the other side of the bench, writing applications that
use Luaasalibrary. Those people will program morein C than in Lua, although they need a good
understanding of Luato create interfaces that are ssmple, easy to use, and well integrated with the
language.

This book has much to offer to all those people. Thefirst part covers the language itself, showing how
we can explore al its potential. We focus on different language constructs and use numerous examples
to show how to use them for practical tasks. Some chaptersin this part cover basic concepts, such as
control structures. But there are also advanced (and original) topics, such as iterators and coroutines.

The second part is entirely devoted to tables, the sole data structure in Lua. Its chapters discuss data
structures, persistence, packages, and object-oriented programming. There we will unveil the real power
of the language.

The third part presents the standard libraries. This part is particularly useful for those that use Luaas a
stand-alone language, although many other applications also incorporate all or part of the standard
libraries. This part devotes one chapter to each standard library: the mathematical library, the table
library, the string library, the I/O library, the operating system library, and the debug library.

Finally, the last part of the book coversthe API between Luaand C, for those that use C to get the full

Page 8 of 351

power of Lua. This part necessarily has aflavor quite different from the rest of the book. There we will
be programming in C, not in Lua; therefore, we will be wearing adifferent hat. For some readers, the
discussion of the C APl may be of marginal interest; for others, it may be the most relevant part of this
book.

Programming in Lua

Page 9 of 351

Programming in Lua

Preface

Other Resources

The reference manual is amust for anyone that wants to really learn any language. This book does not
replace the Lua reference manual. Quite the opposite, they both complement each other. The manual
only describes Lua. It shows neither examples nor arationale for the constructs of the language. On the
other hand, it describes the whole language; this book skips some seldom-used dark corners of the
language. Moreover, the manual is the authoritative document about Lua. Wherever this book disagrees
with the manual, trust the manual. To get the manual and more information about Lua, visit the Lua site
aahttp://ww.l ua. org.

Y ou can also find useful information at the Lua users site, kept by the community of usersat htt p: //
| ua- users. or g. Among other resources, it offers atutorial, alist of third-part packages and
documentation, and an archive of the official Luamailing list. It may be useful to check also the book's
web page:

http://ww. inf.puc-rio.br/~roberto/book/

There you can find an updated errata, code for some of the examples presented in the book, and some
extramaterial.

This book describes Lua 5.0. If you are using a more recent version, check the corresponding manual for
occasional differences between versions. If you are using an older version, thisis good time to upgrade.

Programming in Lua

Page 10 of 351

Programming in Lua

Preface

A Few Typographical Conventions

Thebook encloses” | it eral strings" between double quotes and single characters, like "a’,
between single quotes. Strings that are used as patterns are also enclosed between single quotes, like [%
w_] *". The book uses a courier font both for littlechunks of code andfori dentifi ers. Larger
chunks of code are shown in display style:

-- program "Hello World"
print("Hello World") --> Hello Wrld

The notation - - > shows the output of a statement or, occasionally, the result of an expression:

print(10) --> 10
13 + 3 --> 16

Because a double hyphen (- -) starts acomment in Lua, there is no problem if you include those
annotations in your programs. Finally, the book uses the notation <- - > to indicate that something is
equivalent to something else:

this <--> t hat

That is, there is no difference to Lua whether you writet hi s ort hat .

Programming in Lua

Page 11 of 351

Programming in Lua

Preface

About the Book

| started writing this book in the winter of 1998. (Here, in the southern hemisphere, that means the
middle of the year. And "winter" is more like amild autumn.) At that time, Luawas still in version 3.1.
Since then, Lua went through two big changes, first to version 4.0, in 2000, then to version 5.0, in 2003.

It is quite obvious that those changes had a big impact on the book. Some parts lost their raison d'étre,
such as the detailed explanation around the complexity of upvalues. Whole chapters were rewritten, such
as those about the C API, and whole chapters were created, such as the one about coroutines.

What is not obvious, however, is the big impact that the writing of this book had on the evolution of
Lua. Not by chance, some of the biggest changes in the language were in areas not yet covered by the
book at the time of the change. As | worked through the book, sometimes | suddenly got stuck in a
chapter. | could not figure out how to start or even how to motivateit. It iswhen you try to explain how
to use something that you better feel how easy it isto useit (or not). So, those difficulties were strong
hints that some things in Lua needed improvement. Other times | succeeded in writing a chapter, only to
discover, later, that nobody could understand or agree with what | wrote. Frequently it was my fault (as |
writer), but occasionally we spotted another corner of the language that deserved some improvement.
(For instance, the transition from upvalues to lexical scoping was triggered by complaints over afeeble
attempt, in an earlier draft of this book, to describe upvalues as akind of lexical scoping.)

The changes of the language deferred the completion of this book; now the completion of this book will
probably defer significant changes in the language. There are at least two reasons for that: First, Lua5.0
is cleaner and more mature than earlier versions of the language (partially thanks to the book). Second,
the book adds weight to the culture around the language and therefore increases its inertia. This cultural-
weight increase is the first of my main goals with this book. My second main goal isto increase even
more the spread of Lua.

Programming in Lua

Page 12 of 351

Programming in Lua

Preface

Acknowledgments

Several people helped me to write this book. Luiz Henrigue de Figueiredo and Waldemar Celes, co-
authors of Lua, helped to improve Lua, therefore making my job here easier. Luiz Henrique also helped
with the interior book design. Noemi Rodriguez, André Carregal, Diego Nehab, and Gavin Wraith
reviewed drafts of this book and provided invaluable suggestions. Renato Cerqueira, Carlos Cassino,
Tomas Guisasola, Joe Myers, and Ed Ferguson also provided important suggestions. Alexandre
Nakonechnyj designed the book cover and also helped with the interior book design. Rosane Teles
prepared the Catal oging-in-Publication (CIP) data. My thanksto you all.

Programming in Lua

Page 13 of 351

Programming in Lua

Part |. The Language Chapter 1. Getting Started

1 - Getting Started

To keep with the tradition, our first programin Luajust prints” Hel | o Wor | d":
print("Hello World")

If you are using the stand-alone Lua interpreter, all you have to do to run your first program isto call the
interpreter (usually named | ua) with the name of the text file that contains your program. For instance,
if you write the above program in afilehel | 0. | ua, the following command should run it:

pronpt> lua hello.lua

Asadlightly more complex example, the following program defines a function to compute the factorial
of a given number, asks the user for a number, and printsits factorial:

-- defines a factorial function
function fact (n)
If n == 0 then
return 1
el se
return n * fact(n-1)
end
end

print("enter a nunber:")
a = io.read("*nunber") -- read a nunber
print(fact(a))

If you are using Lua embedded in an application, such as CGlLua or IUPLua, you may need to refer to
the application manual (or to a"local guru") to learn how to run your programs. Nevertheless, Luais still
the same language; most things that we will see here are valid regardless of how you are using Lua. For
a start, we recommend that you use the stand-alone interpreter (that is, the | ua executable) to run your
first examples and experiments.

Page 14 of 351

Programming in Lua

Page 15 of 351

Programming in Lua

Part |. The Language Chapter 1. Getting Started

1.1 - Chunks

Each piece of code that Lua executes, such asafile or asinglelinein interactive mode, isachunk. More
specifically, achunk is simply a sequence of statements.

A semicolon may optionally follow any statement. Usually, | use semicolons only to separate two or
more statements written in the same line, but thisis just a convention. Line breaks play no rolein Luas
syntax; for instance, the following four chunks are all valid and equivalent:

a=1

b = a*2

a = 1;

b = a*2;

a=1: b =a*2

a=1 b = a*2 -- ugly, but valid

A chunk may be as simple as a single statement, such asin the "hello world" example, or it may be
composed of amix of statements and function definitions (which are assignments actually, as we will
see later), such as the factorial example. A chunk may be as large as you wish. Because Luais used also
as a data-description language, chunks with several megabytes are not uncommon. The Luainterpreter
has no problems at all with large sizes.

Instead of writing your program to afile, you may run the stand-alone interpreter in interactive mode. If
you call Luawithout any arguments, you will get its prompt:

Lua 5.0 Copyright (C 1994-2003 Tecgraf, PUC-R o
>

Thereafter, each command that you type (suchasprint "Hel |l o Wrl d") executesimmediately
after you press<ent er >. To exit the interactive mode and the interpreter, just type end-of-file (ct r | -
DinUnix, ctrl - Zin DOS/Windows), or call theexi t function, from the Operating System library
(you havetotypeos. exi t () <ent er >).

Page 16 of 351

In interactive mode, Lua usually interprets each line that you type as a complete chunk. However, if it
detects that the line cannot form a complete chunk, it waits for more input, until it has a complete chunk.
When Luaiswaiting for aline continuation, it shows a different prompt (typically >>). Therefore, you
can enter amulti-line definition, such asthef act ori al function, directly in interactive mode.
Sometimes, however, it is more convenient to put such definitionsin afile, and then call Luato run that
file.

Y ou can execute a sequence of chunks by giving them all as arguments to the stand-alone interpreter,
withthe - | option. For instance, if you have afile a with asingle statement x=1 and another file b with
the statement pr i nt (x) , the command line

pronpt> lua -la -Ib

will run the chunk in a, then the one in b, which will print the expected 1. (The- | option actualy calls
r equi r e, which looks for the filesin a specific path. So, the previous example will not work if this
path does not include the current directory. We will discussther equi r e function in more detailsin
Section 8.1.)

You may usethe-i option to instruct Luato start an interactive session after running the given chunks.
A command linelike

pronpt> lua -i -la -1b

will run the chunk in a, then the one in b, and then prompt you for interaction. Thisis especially useful
for debugging and manual testing. At the end of this chapter we will see other options for the stand-
alone interpreter.

Another way to link chunksiswith thedof i | e function, which immediately executes afile. For
instance, you may have afilel i bl. | ua:

-- file "l'ibl.lua

function norm(x, Yy)
| ocal n2 = x"2 + y"2
return mat h. sqrt(n2)
end

function tw ce (x)

return 2*x
end

Then, in interactive mode, you can type

Page 17 of 351

> dofile("libl.lua") -- load your library
>n =nornm3.4, 1.0)
> print(tw ce(n)) --> 7.0880180586677

Thedof i | e function isuseful also when you are testing a piece of code. Y ou can work with two
windows: One of them is atext editor with your program (in afile pr og. | ua, say) and the other isa
console running Lua in interactive mode. After saving a modification that you make to your program,
you executedof i | e(" prog. | ua") intheLuaconsoleto load the new code; then you can exercise
the new code, calling its functions and printing the results.

Programming in Lua

Page 18 of 351

Programming in Lua

Part |. The Language Chapter 1. Getting Started

1.2 - Global Variables

Global variables do not need declarations. Y ou smply assign avalue to aglobal variableto createit. It
IS not an error to access a non-initialized variable; you just get the special value nil as the result:

print(b) -->nil
b =10
print(b) --> 10

Usually you do not need to delete global variables; if your variable is going to have a short life, you
should use alocal variable. But, if you need to delete a global variable, just assign nil toit:

b = nil
print(b) -->nil

After that, it isasif the variable had never been used. In other words, a global variable is existent if (and
only if) it has anon-nil value.

Programming in Lua

Page 19 of 351

Programming in Lua

Part |. The Language Chapter 1. Getting Started

1.3 - Some Lexical Conventions

Identifiersin Luacan be any string of letters, digits, and underscores, not beginning with adigit; for
instance

i j i 10 e
aSonmewhat LongNane _ I NPUT
Y ou should avoid identifiers starting with an underscore followed by one or more uppercase letters (e.g.,

_VERSI ON); they are reserved for special usesin Lua Usualy, | reserve theidentifier _ (asingle
underscore) for adummy variable.

In Lua, the concept of what is aletter islocale dependent. Therefore, with a proper locale, you can use
variable names such asi ndi ce or agcao. However, such names will make your program unsuitable to
run in systems that do not support that locale.

The following words are reserved; we cannot use them as identifiers:

and br eak do el se el sei f
end fal se f or function if

I N | ocal ni | not or

r epeat return t hen true unt i
whi | e

Luais case-sensitive: and isareserved word, but And and AND are two other different identifiers.

A comment starts anywhere with a double hyphen (- -) and runs until the end of the line. Luaalso offers
block comments, which start with - - [[and run until the corresponding] | . A common trick, when we
want to comment out a piece of code, isto write the following:

-~

print(10) -- no action (coment)

--1]

Now, if we add a single hyphen to the first line, the code isin again:

Page 20 of 351

---[1
print(10) --> 10

--11]

In the first example, the - - inthelast lineisstill inside the block comment. In the second example, the
sequence - - - [[does not start a block comment; so, the pr i nt is outside comments. In this case, the
last [ine becomes an independent comment, asit starts with - - .

Programming in Lua

Page 21 of 351

Programming in Lua

Part |. The Language Chapter 1. Getting Started

1.4 - The Stand-Alone Interpreter

The stand-alone interpreter (also caled | ua. ¢ dueto its sourcefile, or simply | ua dueto its
executable) isasmall program that alows the direct use of Lua. This section presents its main options.

When the interpreter loads afile, it ignoresitsfirst lineif that line starts with a number sign (#"). That
feature allows the use of Lua as a script interpreter in Unix systems. If you start your program with
something like

#! /usr/ 1 ocal /bin/lua
(assuming that the stand-alone interpreter islocated at / usr /| ocal / bi n), or
#!/usr/bin/env |ua
then you can call the program directly, without explicitly calling the Luainterpreter.
Theusageof | uais
| ua [options] [script [args]]

Everything is optional. As we have seen already, when we call | ua without arguments the interpreter
enters in interactive mode.

The - e option alows usto enter code directly into the command line. For instance,

pronpt> lua -e "print(mth.sin(12))" --> -0.53657291800043
(Unix needs the double quotes to stop the shell from interpreting the parentheses.) Aswe previously
saw, - | loadsafileand - i entersinteractive mode after running the other arguments. So, for instance,
the call
"x = 10"

pronpt> lua -i -1 a.lua -e

will load thefilea. | ua, then execute the assignment x = 10, and finally present a prompt for
interaction.

Page 22 of 351

Programming in Lua

Page 23 of 351

More often than not, the script only usesthe positive indices (ar g[1] and ar g[2] , in the example).

Programming in Lua

Page 24 of 351

Programming in Lua

Part |. The Language Chapter 2. Types and Values

2 - Types and Values

Luaisadynamically typed language. There are no type definitions in the language; each value carriesits

own type.

There are eight basic typesin Lua: nil, boolean, number, string, userdata, function, thread, and table.
Thet ype function gives the type name of a given value:

print(type("Hello world")) ~--> string

print(type(10.4*3)) --> nunber
print(type(print)) --> function
print(type(type)) --> function
print(type(true)) --> bool ean
print(type(nil)) -->nil
print(type(type(X))) --> string

The last example will result in" st ri ng" no matter the value of X, because theresult of t ype is
aways astring.

Variables have no predefined types; any variable may contain values of any type:

print(type(a)) --> nil ("a'" is not initialized)
a = 10

print(type(a)) --> nunber

a ="astring!!"

print(type(a)) --> string

a = print -- yes, this is valid!

a(type(a)) --> function

Notice the last two lines. Functions are first-class valuesin Lua; so, we can manipulate them like any
other value. (More about that in Chapter 6.)

Usually, when you use asingle variable for different types, the result is messy code. However,
sometimes the judicious use of thisfacility is helpful, for instance in the use of nil to differentiate a
normal return value from an exceptional condition.

Page 25 of 351

Programming in Lua

Part |. The Language Chapter 2. Types and VValues

2.1 - Nil

Nil isatype with asingle value, nil, whose main property is to be different from any other value. Aswe
have seen, aglobal variable has a nil value by default, before a first assignment, and you can assign nil
to aglobal variable to delete it. Lua uses nil as akind of non-value, to represent the absence of a useful

value.

Programming in Lua

Page 26 of 351

Programming in Lua

Part |. The Language Chapter 2. Types and VValues

2.2 - Booleans

The boolean type has two values, false and tr ue, which represent the traditional boolean values.
However, they do not hold a monopoly of condition values: In Lua, any value may represent a condition.
Conditionals (such as the onesin control structures) consider false and nil as false and anything else as
true. Beware that, unlike some other scripting languages, L ua considers both zero and the empty string
astruein conditional tests.

Programming in Lua

Page 27 of 351

Programming in Lua

Part |. The Language Chapter 2. Types and Values

2.3 - Numbers

The number type represents real (double-precision floating-point) numbers. Lua has no integer type, as it
does not need it. There is awidespread misconception about floating-point arithmetic errors and some
people fear that even a simple increment can go weird with floating-point numbers. The fact is that,
when you use a double to represent an integer, thereis no rounding error at all (unless the number is
greater than 100,000,000,000,000). Specifically, aLua number can represent any long integer without
rounding problems. Moreover, most modern CPUs do floating-point arithmetic as fast as (or even faster
than) integer arithmetic.

It is easy to compile Lua so that it uses another type for numbers, such aslongs or single-precision
floats. Thisis particularly useful for platforms without hardware support for floating point. See the
distribution for detailed instructions.

We can write numeric constants with an optional decimal part, plus an optional decimal exponent.
Examples of valid numeric constants are:

4 0.4 4.57e-3 0. 3el2 5e+20

Programming in Lua

Page 28 of 351

Programming in Lua

Part |. The Language Chapter 2. Types and Values

2.4 - Strings

Strings have the usual meaning: a sequence of characters. Luais eight-bit clean and so strings may
contain characters with any numeric value, including embedded zeros. That means that you can store
any binary datainto a string. Strings in Lua are immutable values. Y ou cannot change a character inside
astring, asyou may in C; instead, you create a new string with the desired modifications, asin the next
example:

a = "one string"

b = string.gsub(a, "one", "another") -- change string parts
print(a) --> one string

print (b) --> anot her string

Strings in Lua are subject to automatic memory management, like all Lua objects. That means that you
do not have to worry about allocation and deallocation of strings; Lua handles thisfor you. A string may
contain asingle letter or an entire book. Lua handles long strings quite efficiently. Programs that
manipul ate strings with 100K or 1M characters are not unusual in Lua.

We can delimit literal strings by matching single or double quotes:

"a |ine"
"anot her |i ne'

a
b

As amatter of style, you should use always the same kind of quotes (single or double) in a program,
unless the string itself has quotes; then you use the other quote, or escape those quotes with backslashes.
Strings in Lua can contain the following C-like escape sequences:

\ a |bell

\ b |back space
\ f |form feed
\ n [newline

\ r |carriage return
\'t |horizonta tab
\ v |vertical tab

Page 29 of 351

\\

backslash

\II

double quote

\ 1

single quote

\

left square bracket

\]

right square bracket

Weillustrate their use in the following examples:

> print("one line\nnext [ine\n\"in quotes\", "in quotes'")
one line

next |ine

“in quotes"”, 'in quotes’

> print('a backslash inside quotes: \'\\\'")

a backsl ash i nsi de quotes:
> print("a sinpler way: "\\'")
a

sinpler way: "\’

l\l

We can specify acharacter in a string also by its numeric value through the escape sequence\ ddd,
where ddd is a sequence of up to three decimal digits. As a somewhat complex example, the two literals
"al o\ n123\"" and'\ 971 o\ 10\ 04923""' have the same value, in asystem using ASCII: 97 isthe
ASCII codefor a, 10 isthe code for newline, and 49 (\ 049 in the example) is the code for the digit 1.

We can delimit literal strings also by matching double square brackets[[. . .]] . Literalsinthis
bracketed form may run for several lines, may nest, and do not interpret escape sequences. Moreover,
this form ignores the first character of the string when this character isanewline. Thisform is especialy
convenient for writing strings that contain program pieces; for instance,

page = [
<HTM_>
<HEAD>

<TI TLE>An HTML Page</ Tl TLE>

</ HEAD>
<BODY>

Lua</ A>
[[a text between doubl e brackets]]

</ BODY>
</ HTML>

1]

write(page)

Page 30 of 351

L ua provides automatic conversions between numbers and strings at run time. Any numeric operation
applied to a string tries to convert the string to a number:

print("10" + 1) --> 11

print("10 + 1") -->10 + 1

print("-5.3e - 10"*"2") --> -1.06e-09

print("hello" + 1) -- ERRCR (cannot convert "hello")

L ua applies such coercions not only in arithmetic operators, but also in other places that expect a
number. Conversely, whenever it finds a number where it expects a string, L ua converts the number to a
string:

print(10 .. 20) --> 1020

(The. . isthe string concatenation operator in Lua. When you write it right after a numeral, you must
separate them with a space; otherwise, Lua thinks that the first dot is a decimal point.)

Despite those automatic conversions, strings and numbers are different things. A comparison like 10
== " 10" isawaysfase, because 10isanumber and " 10" isastring. If you need to convert a string
to anumber explicitly, you can use the functiont onunber , which returns nil if the string does not
denote a proper number:

line = io0.read() -- read a line
n = tonunber (1ine) -- try to convert it to a nunber
If n==nil then
error(line .. " is not a valid nunber")
el se
print(n*2)
end

To convert anumber to a string, you can call the functiont ost r i ng or concatenate the number with
the empty string:

print(tostring(10) == "10") --> true
print(10 .. "" == "10") --> true

Such conversions are always valid.

Programming in Lua

Page 31 of 351

Programming in Lua

Part |. The Language Chapter 2. Types and Values

2.5 - Tables

The table type implements associative arrays. An associative array is an array that can be indexed not
only with numbers, but also with strings or any other value of the language, except nil. Moreover, tables
have no fixed size; you can add as many elements as you want to a table dynamically. Tables are the
main (in fact, the only) data structuring mechanism in Lua, and a powerful one. We use tablesto
represent ordinary arrays, symbol tables, sets, records, queues, and other data structures, in asimple,
uniform, and efficient way. L ua uses tables to represent packages as well. When we writei o. r ead, we
mean "ther ead entry from thei o package". For Lua, that means "index the table i o using the string
"read" asthekey".

Tablesin Lua are neither values nor variables; they are objects. If you are familiar with arraysin Java or
Scheme, then you have afair idea of what we mean. However, if your idea of an array comes from C or
Pascal, you have to open your mind abit. Y ou may think of atable as adynamically allocated object;
your program only manipulates references (or pointers) to them. There are no hidden copies or creation
of new tables behind the scenes. Moreover, you do not have to declare atablein Lua; in fact, thereisno
way to declare one. Y ou create tables by means of a constructor expression, which inits ssmplest form
iIswrittenas{ } :

a ={} -- create a table and store its reference in " a'
k = "x"

a[k] = 10 -- new entry, wth key="x" and val ue=10
a[20] = "great" -- newentry, wth key=20 and val ue="great"
print(a["x"]) --> 10

k = 20

print(alk]) --> "great"

a["x"] = a["x"] + 1 -- increnments entry "x"

print(a["x"])

--> 11

A table is aways anonymous. There is no fixed relationship between avariable that holds a table and the

table itsalf:
a = {}
a["x"] = 10
b =a -- "b' refers to the sane table as " a'

print(b["x"])
b["x"] = 20

--> 10

Page 32 of 351

print(a["x"]) --> 20
a ni | -- nowonly "b'" still refers to the table
b ni | -- now there are no references left to the table

When a program has no references to atable left, Lua memory management will eventually delete the
table and reuse its memory.

Each table may store values with different types of indices and it grows as it needs to accommodate new
entries:

a = {} -- enpty table

-- create 1000 new entries

for i=1,1000 do a[i] =1i*2 end
print(al9]) --> 18

a["x"] = 10

print(a["x"]) --> 10
print(a["y"]) --> ni

Noticethe last line: Like global variables, table fields evaluate to nil if they are not initialized. Also like
global variables, you can assign nil to atable field to delete it. That is not a coincidence: Lua stores
global variablesin ordinary tables. More about this subject in Chapter 14.

To represent records, you use the field name as an index. Lua supports this representation by providing
a. nane as syntactic sugar for a[" nane"] . So, we could write the last lines of the previous example
in acleanlier manner as

a.x = 10 -- sanme as a["x"] = 10
print(a.x) -- sane as print(a["x"])
print(a.y) -- sane as print(a["y"])

For Lua, the two forms are equivalent and can be intermixed freely; but for a human reader, each form
may signal a different intention.

A common mistake for beginnersisto confusea. x with a[x] . Thefirst form representsa[" x"] , that
IS, atable indexed by the string " x" . The second form is atable indexed by the value of the variable x.
See the difference:

a = {}

X ="y"

a[x] = 10 -- put 10 in field "y"
print(alx]) --> 10 -- value of field "y"

print(a.x) -->nil -- value of field "x" (undefined)

Page 33 of 351

print(a.y) --> 10 -- value of field "y"

To represent a conventional array, you simply use atable with integer keys. Thereis no way to declare
its size; you just initialize the elements you need:

-- read 10 lines storing themin a table
= {}

for i=1,10 do
a[i] = 1o0.read()

end

When you iterate over the elements of the array, the first non-initialized index will result in nil; you can
use this value as a sentinel to represent the end of the array. For instance, you could print the lines read
in the last example with the following code:

-- print the |ines

for i,line in ipairs(a) do
print(line)
end

The basic Lualibrary providesi pai r s, ahandy function that allows you to iterate over the elements of
an array, following the convention that the array ends at itsfirst nil element.

Since you can index atable with any value, you can start the indices of an array with any number that
pleases you. However, it is customary in Luato start arrays with one (and not with zero, asin C) and the
standard libraries stick to this convention.

Because we can index atable with any type, when indexing a table we have the same subtleties that arise
in equality. Although we can index atable both with the number O and with the string " 0" , these two
values are different (according to equality) and therefore denote different positionsin atable. By the
same token, the strings ™ +1"," 01" ,and " 1" al denote different positions. When in doubt about the
actual types of your indices, use an explicit conversion to be sure:

i = 10; j = "10"; k = "+10"
a = {}
a[i] = "one val ue"
al[j] = "another val ue"
a[k] = "yet anot her val ue"
prlnt(a[j]) --> anot her val ue
print(alk]) --> yet anot her val ue

--> one val ue
--> one val ue

print(a[tonunber (]

)])
print(a[tonunber(k)])

Page 34 of 351

Y ou can introduce subtle bugs in your program if you do not pay attention to this point.

Programming in Lua

Page 35 of 351

Programming in Lua

Part |. The Language Chapter 2. Types and Values

2.6 - Functions

Functions are first-class values in Lua. That means that functions can be stored in variables, passed as
arguments to other functions, and returned as results. Such facilities give great flexibility to the
language: A program may redefine afunction to add new functionality, or simply erase afunction to
create a secure environment when running a piece of untrusted code (such as code received through a
network). Moreover, Lua offers good support for functional programming, including nested functions
with proper lexical scoping; just wait. Finally, first-class functions play a key role in Lua's object-
oriented facilities, as we will seein Chapter 16.

Luacan call functions written in Lua and functions written in C. All the standard library in Luais
written in C. It comprises functions for string manipulation, table manipulation, 1/0O, accessto basic
operating system facilities, mathematical functions, and debugging. Application programs may define
other functionsin C.

Programming in Lua

Page 36 of 351

Programming in Lua

Part |. The Language Chapter 2. Types and VValues

2.7 - Userdata and Threads

The userdata type allows arbitrary C data to be stored in Luavariables. It has no predefined operations in
Lua, except assignment and equality test. Userdata are used to represent new types created by an
application program or alibrary written in C; for instance, the standard 1/0 library uses them to
represent files. We will discuss more about userdata later, when we get to the C API.

We will explain the thread type in Chapter 9, where we discuss coroutines.

Programming in Lua

Page 37 of 351

Programming in Lua

Part |. The Language Chapter 3. Expressions

3 - Expressions

Expressions denote values. Expressions in Luainclude the numeric constants and string literals,
variables, unary and binary operations, and function calls. Expressions can be also the unconventional

function definitions and table constructors.

Programming in Lua

Page 38 of 351

Programming in Lua

Part |. The Language Chapter 3. Expressions

3.1 - Arithmetic Operators

L ua supports the usual arithmetic operators. the binary "+” (addition), "- ~ (subtraction), *~
(multiplication), '/ ~ (division), and the unary "- ~ (negation). All of them operate on real numbers.

Luaalso offers partial support for " (exponentiation). One of the design goals of Luaisto have atiny
core. An exponentiation operation (implemented through the pow function in C) would mean that we
should always need to link Luawith the C mathematical library. To avoid this need, the core of Lua
offers only the syntax for the " binary operator, which has the higher precedence among all operations.
The mathematical library (which is standard, but not part of the Lua core) gives to this operator its
expected meaning.

Programming in Lua

Page 39 of 351

Programming in Lua

Part |. The Language Chapter 3. Expressions

3.2 - Relational Operators

Lua provides the following relational operators:
< > <= >= == ~=

All these operators always result in true or false.

The operator == tests for equality; the operator ~= is the negation of equality. We can apply both
operators to any two values. If the values have different types, Lua considers them different values.
Otherwise, Lua compares them according to their types. Specifically, nil isequal only to itself.

Lua compares tables, userdata, and functions by reference, that is, two such values are considered equal
only if they are the very same object. For instance, after the code

a={}, ax=1, aay =0
b ={}; b.x=1; b.y =0
cC = a

you have that a==c but a~=Db.

We can apply the order operators only to two numbers or to two strings. Lua compares numbersin the
usual way. Lua compares strings in alphabetical order, which follows the locale set for Lua. For
instance, with the European Latin-1 locale, wehave" acai " < "acai" < "acorde". Other types
can be compared only for equality (and inequality).

When comparing values with different types, you must be careful: Remember that " 0" ==0 isfalse.
Moreover, 2<15 isobvioudly true, but " 2" <" 15" isfalse (aphabetical order!). To avoid inconsistent
results, Luaraises an error when you mix strings and numbers in an order comparison, such as 2<" 15" .

Programming in Lua

Page 40 of 351

Programming in Lua

Part |. The Language Chapter 3. Expressions

3.3 - Logical Operators

Thelogical operators are and, or, and not. Like control structures, all logical operators consider false
and nil as false and anything else as true. The operator and returns its first argument if it isfalse;
otherwise, it returns its second argument. The operator or returnsitsfirst argument if it is not false;
otherwise, it returns its second argument:

print(4 and 5) -->5
print(nil and 13) -->nil
print(false and 13) --> fal se
print(4 or 5) --> 4
print(false or 5) -->5

Both and and or use short-cut evaluation, that is, they evaluate their second operand only when
necessary.

A useful Luaidiomisx = x or v, whichisequivalentto
if not x then x = v end
I.e., it setsx to adefault value v when x isnot set (provided that x is not set to false).

Another useful idiomis(a and b) or c (orsmplya and b or c, becauseand hasahigher
precedence than or), which is equivalent to the C expression

a?b: c

provided that b is not false. For instance, we can select the maximum of two numbers x andy with a
statement like

max = (x >y) and x or y

When x > vy, thefirst expression of the and istrue, so the and resultsin its second expression (X)
(which is aso true, because it is a number), and then the or expression results in the value of itsfirst
expression, x. When x > vy isfase, theand expressionisfalse and so the or resultsin its second
expression, y.

Page 41 of 351

The operator not always returns true or false:

print(not nil) --> true
print(not false) --> true
print(not 0) --> fal se
print(not not nil) --> false

Programming in Lua

Page 42 of 351

Programming in Lua

Part |. The Language Chapter 3. Expressions

3.4 - Concatenation

L ua denotes the string concatenation operator by “. . " (two dots). If any of its operands is a number,
L ua converts that number to a string.

print("Hello " .. "World") --> Hello Wrld
print(0 .. 1) --> 01

Remember that stringsin Lua are immutable values. The concatenation operator always creates a new
string, without any modification to its operands:

a = "Hello"
print(a .. " World") --> Hello Wrld
print(a) --> Hello

Programming in Lua

Page 43 of 351

Programming in Lua

Part |. The Language Chapter 3. Expressions

3.5 - Precedence

Operator precedence in Luafollows the table below, from the higher to the lower priority:

not - (unary)

All binary operators are | eft associative, except for "~ (exponentiation) and *. . ~ (concatenation), which
are right associative. Therefore, the following expressions on the left are equivalent to those on the right:

a+ti < b/2+1 <--> (ati) < ((b/2)+1)
5+x"2*8 <--> 5+((x"2)*8)
a<yandy <=z <--> (a <y) and (y <= 2z)
- X"2 <--> - (x"2)

x"y"z <--> x"(y"z)

When in doubt, always use explicit parentheses. It is easier than looking up in the manual and probably
you will have the same doubt when you read the code again.

Programming in Lua

Page 44 of 351

Programming in Lua

Part |. The Language Chapter 3. Expressions

3.6 - Table Constructors

Constructors are expressions that create and initialize tables. They are a distinctive feature of Luaand
one of its most useful and versatile mechanisms.

The simplest constructor is the empty constructor, { } , which creates an empty table; we saw it before.
Constructors also initialize arrays (called al'so sequences or lists). For instance, the statement

days = {"Sunday", "Monday", "Tuesday", "Wdnesday",
“"Thur sday", "Friday", "Saturday"}

will initializedays[1] withthestring" Sunday" (thefirst element has alwaysindex 1, not 0), days
[2] with" Monday", and so on:

print(days[4]) --> Wednesday

Constructors do not need to use only constant expressions. We can use any kind of expression for the
value of each element. For instance, we can build a short sine table as

tab = {sin(l), sin(2), sin(3), sin(4),
sin(5), sin(6), sin(7), sin(8)}

Toinitialize atable to be used as arecord, Lua offers the following syntax:
a = {x=0, y=0}

which is equivalent to
a=1{}; a.x=0; a.y=0

No matter what constructor we use to create a table, we can always add and remove other fields of any
typetoit:

w = {x=0, y=0, | abel ="consol e"}
x = {sin(0), sin(l), sin(2)}
wW 1] = "another field"

Page 45 of 351

x.f = w

print(w"x"]) -->0

print(w1]) --> another field
print(x.f[1]) --> another field
w. X = nil -- renove field "x"

That is, all tables are created equal; constructors only affect their initialization.

Every time Lua evaluates a constructor, it creates and initializes a new table. Consequently, we can use
tables to implement linked lists:

list = nil
for line inio.lines() do

list = {next=list, value=line}
end

This code reads lines from the standard input and stores them in alinked list, in reverse order. Each node
in thelist isatable with two fields: val ue, with the line contents, and next , with areference to the
next node. The following code prints the list contents:

| = 1ist

while | do
print(l.val ue)
| = 1. next

end

(Because we implemented our list as a stack, the lineswill be printed in reverse order.) Although
instructive, we hardly use the above implementation in real Lua programs; lists are better implemented
as arrays, aswe will seein Chapter 11.

We can mix record-style and list-style initializations in the same constructor:

polyline = {col or="blue", thickness=2, npoints=4,

{x=0, y=0},
{x=-10, y=0},
{x=-10, y=1},
{x=0, y=1}

}

The above example aso illustrates how we can nest constructors to represent more complex data
structures. Each of the elementspol yl i ne[1], ..., pol yl i ne[4] isatable representing arecord:

Page 46 of 351

print (polyline[2].x) --> -10

Those two constructor forms have their limitations. For instance, you cannot initialize fields with
negative indices, or with string indices that are not proper identifiers. For such needs, there is another,
more general, format. In thisformat, we explicitly write the index to be initialized as an expression,
between square brackets:

opnanmes = {["+"] = "add", ["-"] = "sub",
["*"] = "mul", ["/"] = "div"}
i =20; s ="-"
a ={[i+0] =s, [i+l] =s..s, [i+2] = s..s..s}
print (opnanes[s]) --> sub
print(a[22]) —e> -

That syntax is more cumbersome, but more flexible too: Both the list-style and the record-style forms
are special cases of this more general one. The constructor

{x=0, y=0}
Isequivalent to
{["x"]=0, ["y"]=0}
and the constructor
{"red", "green", "Dblue"}
Isequivalent to
{[1] ="red", [2]="green", [3]="Dblue"}
For those that really want their arrays starting at 0, it is not difficult to write the following:

days = {[0] ="Sunday", "Mbnday", "Tuesday", "Wdnesday",
"Thur sday”, "Friday", "Saturday"}

Now, thefirst value, " Sunday" , isat index 0. That zero does not affect the other fields, but
" Monday" naturally goestoindex 1, becauseit isthefirst list value in the constructor; the other values
follow it. Despite thisfacility, | do not recommend the use of arrays starting at O in Lua. Remember that

Page 47 of 351

most functions assume that arrays start at index 1, and therefore will not handle such arrays correctly.

Y ou can always put acomma after the last entry. These trailing commas are optional, but are always
valid:

a={[1]="red", [2]="green", [3]="Dblue",}

Such flexibility makes it easier to write programs that generate L ua tables, because they do not need to
handle the last element as a special case.

Finally, you can always use a semicolon instead of acomma in a constructor. We usually reserve
semicolonsto delimit different sections in a constructor, for instance to separate its list part from its
record part:

{x=10, y=45; "one", "two", "three"}

Programming in Lua

Page 48 of 351

Programming in Lua

Part |. The Language Chapter 4. Statements

4 - Statements

L ua supports an amost conventional set of statements, similar to those in C or Pascal. The conventional
statements include assignment, control structures, and procedure calls. Lua also supports some not so
conventional statements, such as multiple assignments and local variable declarations.

Programming in Lua

Page 49 of 351

Programming in Lua

Part |. The Language Chapter 4. Statements

4.1 - Assignment

Assignment is the basic means of changing the value of avariable or atable field:

a="hello" .. "world"
t.n=t.n + 1

Lua alows multiple assignment, where alist of valuesis assigned to alist of variablesin one step. Both
lists have their elements separated by commas. For instance, in the assignment

a, b =10, 2*x
the variable a getsthe value 10 and b gets 2* x.

In amultiple assignment, Luafirst evaluates all values and only then executes the assignments.
Therefore, we can use a multiple assignment to swap two values, asin

X, Y =V, X -- swap x' for "y
a[i], a[j] = a[jl, a[i] -- swap a[i]" for "a[i]’

Lua aways adjusts the number of valuesto the number of variables: When the list of valuesis shorter
than the list of variables, the extra variables receive nil astheir values; when the list of valuesislonger,
the extra values are silently discarded:

a, b, c =0, 1

print(a,b,c) -->0 1 ni |

a, b = a+l, b+l, b+2 -- value of b+2 is ignored
print(a,b) --> 1 2

a, b, c =0

print(a,b,c) -->0 ni | ni |

The last assignment in the above example shows a common mistake. To initialize a set of variables, you
must provide avalue for each one:

a, b, c =0, 0, 0
print(a,b,c) -->0 0 0

Page 50 of 351

Actually, most of the previous examples are somewhat artificial. | seldom use multiple assignment
simply to write several assignments in one line. But often we really need multiple assignment. We
already saw an example, to swap two values. A more frequent use is to collect multiple returns from
function calls. Aswe will discussin detail later, a function call can return multiple values. In such cases,
asingle expression can supply the values for severa variables. For instance, in the assignment

a, b =1f()

f () returnstwo results: a getsthefirst and b gets the second.

Programming in Lua

Page 51 of 351

Programming in Lua

Part |. The Language Chapter 4. Statements

4.2 - Local Variables and Blocks

Besides global variables, Lua supports local variables. We create local variables with the local
statement:

] =10 -- gl obal variable
local i =1 -- |l ocal variable

Unlike global variables, local variables have their scope limited to the block where they are declared. A
block isthe body of a control structure, the body of afunction, or a chunk (the file or string with the
code where the variable is declared).

x = 10
local I =1 -- local to the chunk

while i <=x do

| ocal x = 1*2 -- local to the while body
print(x) --> 2, 4, 6, 8,
=1 + 1

end

if i > 20 then

| ocal x -- local to the "then" body
x = 20
print(x + 2)
el se
print(x) --> 10 (the gl obal one)
end
print(x) --> 10 (the gl obal one)

Beware that this example will not work as expected if you enter it in interactive mode. The second line,
| ocal i = 1,isacomplete chunk by itself. As soon asyou enter thisline, Luarunsit and starts a
new chunk in the next line. By then, the local declaration is already out of scope. To run such examples
in interactive mode, you should enclose all the code in ado block.

It is good programming style to use local variables whenever possible. Local variables help you avoid

Page 52 of 351

cluttering the global environment with unnecessary names. Moreover, the accessto local variablesis
faster than to global ones.

Lua handles local variable declarations as statements. As such, you can write local declarations
anywhere you can write a statement. The scope begins after the declaration and goes until the end of the
block. The declaration may include an initial assignment, which works the same way as a conventional
assignment: Extra values are thrown away; extra variables get nil. As a specific case, if adeclaration has
no initial assignment, it initializes al its variables with nil.

local a, b =1, 10

I f a<b then

print(a) -->1

| ocal a -- =nil" isinplicit

print(a) -->nil
end -- ends the block started at "then'
print(a,Db) --> 1 10

A common idiominLuais
| ocal foo = foo

This code creates alocal variable, f 0o, and initializes it with the value of the global variablef 0o. That
idiom is useful when the chunk needs to preserve the original value of f 00 even if later some other
function changes the value of the global f 00; it also speeds up accessto f 00.

Because many languages force you to declare all local variables at the beginning of a block (or a
procedure), some people think it is a bad practice to use declarations in the middle of a block. Quite the
opposite: By declaring a variable only when you need it, you seldom need to declare it without an initial
value (and therefore you seldom forget to initialize it). Moreover, you shorten the scope of the variable,
which increases readability.

We can delimit a block explicitly, bracketing it with the keywords do-end. These do blocks can be
useful when you need finer control over the scope of one or more local variables:

do
| ocal a2 = 2*a
| ocal d = sqgrt(b”2 - 4*a*c)

x1 = (-b + d)/a2
x2 = (-b - d)/a2
end -- scope of "a2' and "d' ends here

print(x1l, x2)

Page 53 of 351

Programming in Lua

Page 54 of 351

Programming in Lua

Part |. The Language Chapter 4. Statements

4.3 - Control Structures

Lua provides asmall and conventional set of control structures, with if for conditional and while,
repeat, and for for iteration. All control structures have an explicit terminator: end terminates the if, for
and while structures; and until terminates the r epeat structure.

The condition expression of a control structure may result in any value. Luatreats astrue all values
different from false and nil.

ﬁ Programming in Lua *

Page 55 of 351

Programming in Lua

Part |. The Language Chapter 4. Statements

4.3.1 - if then else

An if statement tests its condition and executes its then-part or its else-part accordingly. The else-part is
optional.

If a<O then a = 0 end
If a<b then return a else return b end
I f line > MAXLI NES t hen

showpage()

line =0
end

When you write nested ifs, you can use elseif. It issimilar to an else followed by an if, but it avoids the
need for multiple ends:

If op == "+" then
r =a+b

elseif op == "-" then
r =a->b

elseif op == "*" then
r = a*b

elseif op == "/" then
r = alb

el se
error("invalid operation")

end

Programming in Lua

Page 56 of 351

Programming in Lua

Part |. The Language Chapter 4. Statements

4.3.2 - while

Asusual, Luafirst tests the while condition; if the condition is false, then the loop ends; otherwise, Lua
executes the body of the loop and repeats the process.

local i =1
while a[i] do
print(a[i])
=i +1
end

Programming in Lua

Page 57 of 351

Programming in Lua

Part |. The Language Chapter 4. Statements

4.3.3 - repeat

Asthe nameimplies, arepeat-until statement repeats its body until its condition istrue. Thetest is done
after the body, so the body is aways executed at |east once.

-- print the first non-enpty line

r epeat

| ine = os.read()
until line ~=""
print(line)

Programming in Lua

Page 58 of 351

Programming in Lua

Part |. The Language Chapter 4. Statements

4.3.4 - Numeric for
Thefor statement has two variants. the numeric for and the generic for.
A numeric for hasthe following syntax:

for var=expl, exp2, exp3 do
somet hi ng
end

That loop will execute sonet hi ng for each value of var fromexpl toexp2, using exp3 asthe step
to increment var . Thisthird expression is optional; when absent, Lua assumes one as the step value. As
typical examples of such loops, we have

for i=1,f(x) do print(i) end
for 1=10,1,-1 do print(i) end

Thefor loop has some subtleties that you should learn in order to make good use of it. First, all three
expressions are evaluated once, before the loop starts. For instance, in the first example, f (x) iscalled
only once. Second, the control variable isalocal variable automatically declared by the for statement
and isvisible only inside the loop. A typical mistake is to assume that the variable still exists after the
loop ends:

=1,10 do print(i) end

i
max = i -- probably wong! "i' here is gl obal

If you need the value of the control variable after the loop (usually when you break the loop), you must
save this value into another variable:

-- find a value in a |ist
| ocal found = nil
for 1=1,a.n do

if a[i] == value then
found = 1| -- save val ue of i
br eak

end

Page 59 of 351

end
print (found)

Third, you should never change the value of the control variable: The effect of such changesis
unpredictable. If you want to break afor loop before its normal termination, use break.

Programming in Lua

Page 60 of 351

Programming in Lua

Part |. The Language Chapter 4. Statements

4.3.5 - Generic for

The generic for loop allows you to traverse all values returned by an iterator function. We have already
seen examples of the generic for:

-- print all values of array a
for i,vinipairs(a) do print(v) end

For each step in that code, i gets an index, while v gets the value associated with that index. A similar
example shows how we traverse al keys of atable:

-- print all keys of table "t°
for k in pairs(t) do print(k) end

Despite its apparent simplicity, the generic for is powerful. With proper iterators, we can traverse almost
anything, and do it in areadable fashion. The standard libraries provide several iterators, which alow us
to iterate over thelinesof afile(i 0. | i nes), the pairsin atable (pai r s), the words of a string
(string. gfind, whichwewill seein Chapter 20), and so on. Of course, we can write our own
iterators. Although the use of the generic for is easy, the task of writing iterator functions has its
subtleties. We will cover thistopic later, in Chapter 7.

The generic loop shares two properties with the numeric loop: The loop variables are local to the loop
body and you should never assign any value to the loop variables.

L et us see amore concrete example of the use of a generic for. Suppose you have a table with the names
of the days of the week:

days = {"Sunday", "Monday", "Tuesday", "Wdnesday",
“"Thur sday", "Friday", "Saturday"}

Now you want to translate a name into its position in the week. Y ou can search the table, looking for the
given name. Frequently, however, a more efficient approach in Luaisto build areverse table, say
r evDays, that has the names as indices and the numbers as values. That table would look like this:

revDays = {[" Sunday"]

= 1, ["Monday"] = 2,
[" Tuesday"] =

3, ["Wednesday"] = 4,

Page 61 of 351

[" Thur sday"]
[" Sat ur day"]

5, ["Friday"] = 6,
7}

Then, al you have to do to find the order of anameisto index thisreversetable:

x = "Tuesday"
print(revDays[x]) --> 3

Of course, we do not need to manually declare the reverse table. We can build it automatically from the
original one:

revDays = {}

for i,v in ipairs(days) do
revDays[v] =i

end

The loop will do the assignment for each element of days, with the variablei getting the index (1,
2, ...) and v thevalue (" Sunday", " Monday", ...).

Programming in Lua

Page 62 of 351

Programming in Lua

Part |. The Language Chapter 4. Statements

4.4 - break and return

The break and retur n statements allow us to jump out from an inner block.

Y ou use the break statement to finish aloop. This statement breaks the inner loop (for, repeat, or
while) that contains it; it cannot be used outside a loop. After the break, the program continues running
from the point immediately after the broken loop.

A return statement returns occasional results from afunction or simply finishes afunction. Thereisan
implicit return at the end of any function, so you do not need to use one if your function ends naturally,
without returning any value.

For syntactic reasons, abreak or return can appear only as the last statement of a block (in other words,
as the last statement in your chunk or just before an end, an else, or an until). For instance, in the next
example, break isthe last statement of the then block.

local i =1

while a[i] do
if a[i] == v then break end
I =1 + 1

end

Usually, these are the places where we use these statements, because any other statement following them
Is unreachable. Sometimes, however, it may be useful to write areturn (or abreak) inthe middle of a
block; for instance, if you are debugging a function and want to avoid its execution. In such cases, you
can use an explicit do block around the statement:

function foo ()

return - - << SYNTAX ERROR
-- ‘return' is the last statenent in the next bl ock
do return end -- K

.. -- statenents not reached
end

Programming in Lua

Page 63 of 351

Programming in Lua

Part |. The Language Chapter 5. Functions

5 - Functions

Functions are the main mechanism for abstraction of statements and expressionsin Lua. Functions can
both carry out a specific task (what is sometimes called procedure or subroutine in other languages) or
compute and return values. In the first case, we use afunction call as a statement; in the second case, we
use it as an expression:

print(8*9, 9/8)
a = math.sin(3) + math. cos(10)
print(os.date())

In both cases, we write alist of arguments enclosed in parentheses. If the function call has no arguments,
we must write an empty list () to indicate the call. Thereis aspecia caseto thisrule: If the function has
one single argument and this argument is either aliteral string or atable constructor, then the
parentheses are optional:

print "Hello Wrl d" <--> print("Hello Worl d")
dofile "a.lua' <--> dofile ('a.lua")
print [[a multi-line <--> print([[a multi-line
nmessage] | nmessage] |)

f{x=10, y=20} <--> f ({x=10, y=20})
type{} <--> type({})

Luaaso offersa special syntax for object-oriented calls, the colon operator. An expression likeo: f 0o
(x) isjust another way towriteo. f oo(0, X),thatis,tocal o. f oo adding o asafirst extra
argument. In Chapter 16 we will discuss such calls (and object-oriented programming) in more detail.

Functions used by a L ua program can be defined both in Luaand in C (or in any other language used by
the host application). For instance, al library functions are written in C; but this fact has no relevance to
Lua programmers. When calling afunction, there is no difference between functions defined in Luaand
functions defined in C.

Aswe have seen in other examples, a function definition has a conventional syntax; for instance

-- add all elenments of array "a'
function add (a)

Page 64 of 351

| ocal sum = 0
for i,v in ipairs(a) do
sum = sum + v
end
return sum
end

In that syntax, afunction definition has a name (add, in the previous example), alist of parameters, and
abody, whichisalist of statements.

Parameters work exactly aslocal variables, initialized with the actual arguments given in the function
call. You can call afunction with a number of arguments different from its number of parameters. Lua
adjusts the number of arguments to the number of parameters, as it does in a multiple assignment: Extra
arguments are thrown away; extra parameters get nil. For instance, if we have afunction like

function f(a, b) return a or b end

we will have the following mapping from arguments to parameters:

CALL PARAMVETERS

f(3) a=3, b=ni

f(3, 4) a=3, b=4

f(3, 4, 5) a=3, b=4 (5 i s discarded)

Although this behavior can lead to programming errors (easily spotted at run time), it is also useful,
especially for default arguments. For instance, consider the following function, to increment a global
counter.

function incCount (n)
n=nor 1
count = count + n
end

Thisfunction has 1 asits default argument; that is, the call i ncCount () , without arguments,
increments count by one. When you call i ncCount (), Luafirst initializes n with nil; theor results
In its second operand; and as aresult Lua assigns adefault 1 to n.

Programming in Lua

Page 65 of 351

Programming in Lua

Part |. The Language Chapter 5. Functions

5.1 - Multiple Results

An unconventional, but quite convenient feature of Luais that functions may return multiple results.
Several predefined functions in Lua return multiple values. An exampleisthest ri ng. fi nd function,
which locates a pattern in a string. It returns two indices: the index of the character where the pattern
match starts and the one where it ends (or nil if it cannot find the pattern). A multiple assignment allows
the program to get both results:

s, e =string.find("hello Lua users", "Lua")
print(s, e) --> 7 9

Functions written in Lua also can return multiple results, by listing them all after the return keyword.
For instance, a function to find the maximum element in an array can return both the maximum value
and itslocation:

function maxi num (a)
local m =1 - - maxi mum i ndex
|l ocal m= a[m] - - maxi mum val ue
for i,val in ipairs(a) do
if val > mthen

m =i
m = val
end
end
return m m
end
print (maxi num({8, 10, 23, 12, 5})) -->23 3

Lua always adjusts the number of results from afunction to the circumstances of the call. When we call
afunction as a statement, Luadiscards al of itsresults. When we use a call as an expression, Lua keeps
only the first result. We get all results only when the call isthe last (or the only) expressionin alist of
expressions. These lists appear in four constructionsin Lua: multiple assignment, arguments to function
calls, table constructors, and retur n statements. To illustrate all these uses, we will assume the following
definitions for the next examples:

Page 66 of 351

function fooO () end -- returns no results
function fool () return 'a end -- returns 1 result
function foo2 () return "a','b" end -- returns 2 results

In amultiple assignment, afunction call asthe last (or only) expression produces as many results as
needed to match the variables:

X,y = foo2() -- x='a', y='b
x = foo2() -- x='a', 'b" is discarded
X,Y,z = 10, foo2() -- x=10, y="a', z='b

If afunction has no results, or not as many results as we need, L ua produces nils:

X,y = foo0() -- x=nil, y=nil
X,y = fool() -- x="a', y=nil
X,y,z = foo2() -- x=a, y=b', z=nil

A function call that is not the last element in the list always produces one result:

foo2(), 20 -- x="a', y=20

X,y
X,y = fooO(), 20, 30 -- x='nil', y=20, 30 is discarded

When afunction call isthe last (or the only) argument to another call, all results from the first call go as

arguments. We have seen examples of this construction aready, with pri nt :

print(foo0()) -->

print(fool()) --> a

print(foo2()) --> a b

print(foo2(), 1) --> a 1

print(foo2() .. "x") --> ax (see bel ow)

When the call to f 002 appearsinside an expression, L ua adjusts the number of results to one; so, in the

last line, only the" a" is used in the concatenation.

The pri nt function may receive a variable number of arguments. (In the next section we will see how
to write functions with variable number of arguments.) If wewritef (g()) andf hasafixed number of

arguments, Lua adjusts the number of results of g to the number of parametersof f , aswe saw
previously.

A constructor also collects all results from acall, without any adjustments:

a = {foo0()} --a={} (an enpty table)

Page 67 of 351

a
a

{fool()} -- a
{foo2()} -- a

As aways, this behavior happens only when the call isthe last in the list; otherwise, any call produces
exactly one result:

a = {fooO(), foo2(), 4} --a[l1] =nil, a[2] ='a, a[3] =14
Finally, astatement liker et urn f () returnsall valuesreturned by f :

function foo (i)

if I == 0 then return foo0()
elseif i == 1 then return fool()
elseif i == 2 then return foo2()
end
end
print(foo(1)) --> a
print(foo(2)) -->a b
print(foo(0)) -- (no results)
print(foo(3)) -- (no results)

Y ou can force a cal to return exactly one result by enclosing it in an extra pair of parentheses:

print((foo0())) --> nil
print((fool())) --> a
print((foo2()))

Beware that areturn statement does not need parentheses around the returned value, so any pair of
parentheses placed there counts as an extra pair. That is, astatement likereturn (f()) aways
returns one single value, no matter how many valuesf returns. Maybe thisis what you want, maybe not.

A special function with multiple returnsisunpack. It receives an array and returns as results all
elements from the array, starting from index 1.

print (unpack{10, 20, 30}) --> 10 20 30
a, b = unpack{ 10, 20, 30} -- a=10, b=20, 30 is discarded

An important use for unpack isin ageneric call mechanism. A generic call mechanism allows you to
call any function, with any arguments, dynamically. In ANSI C, for instance, there is no way to do that.
Y ou can declare afunction that receives a variable number of arguments (with st dar g. h) and you can
call avariable function, using pointers to functions. However, you cannot call afunction with avariable

Page 68 of 351

number of arguments: Each call you write in C has afixed number of arguments and each argument has
afixed type. In Lua, if you want to call avariable function f with variable argumentsin an array a, you
simply write

f (unpack(a))

The call to unpack returnsall valuesin a, which become the argumentsto f . For instance, if we
execute

f
a

= string.find

={|lhe||0|l’ |l|||l}

thenthecall f (unpack(a)) returns 3 and 4, exactly the same asthe staticcall st ri ng. fi nd
("hello™, "I'l™).

Although the predefined unpack iswritten in C, we could writeit also in Lua, using recursion:

function unpack (t, i)
i =i or 1
if t[i] then
return t[i], unpack(t, i + 1)
end
end

Thefirst timewe call it, with asingle argument, i gets 1. Then the function returnst [1] followed by
al resultsfromunpack(t, 2),whichinturnreturnst [2] followed by al resultsfrom unpack
(t, 3),andsoon, until thelast non-nil element.

Programming in Lua

Page 69 of 351

Programming in Lua

Part |. The Language Chapter 5. Functions

5.2 - Variable Number of Arguments

Some functions in Luareceive a variable number of arguments. For instance, we have already called
pri nt with one, two, and more arguments.

Suppose now that we want to redefine pr i nt in Lua: Perhaps our system does not haveast dout and
so, instead of printing its arguments, pri nt storesthemin aglobal variable, for later use. We can write
this new function in Lua asfollows:

printResult = ""

function print (...)
for i,v in ipairs(arg) do
printResult = printResult .. tostring(v) .. "\t"
end
printResult = printResult .. "\n"
end

Thethreedots(. . .) in the parameter list indicate that the function has a variable number of arguments.
When this function is called, al its arguments are collected in a single table, which the function accesses
as a hidden parameter named ar g. Besides those arguments, the ar g table has an extrafield, n, with the
actual number of arguments collected.

Sometimes, a function has some fixed parameters plus a variable number of parameters. Let us see an
example. When we write a function that returns multiple values into an expression, only itsfirst result is
used. However, sometimes we want another result. A typical solution is to use dummy variables; for
instance, if we want only the second result from st ri ng. f i nd, we may write the following code:

local , x = string.find(s, p)
-- now use X'
An dternative solution isto defineasel ect function, which selects a specific return from afunction:

print(string.find("hello hello", " hel")) -->6 9
print(select(l, string.find("hello hello", " hel"))) -->6

Page 70 of 351

print(select(2, string.find("hello hello", " hel"))) -->9

Noticethat acall to sel ect hasaways one fixed argument, the selector, plus a variable number of
extra arguments (the returns of a function). To accommodate this fixed argument, a function may have
regular parameters before the dots. Then, Lua assigns the first arguments to those parameters and only
the extra arguments (if any) go to ar g. To better illustrate this point, assume a definition like

function g (a, b, ...) end

Then, we have the following mapping from arguments to parameters:

CALL PARAVETERS

g(3) a=3, b=nil, arg={n=0}
g(3, 4) a=3, b=4, arg={n=0}

g(3, 4, 5, 8) a=3, b=4, arg={5, 8; n=2}

Using those regular parameters, the definition of sel ect is straightforward:

function select (n, ...)
return arg[n]
end

Sometimes, a function with a variable number of arguments needs to pass them all to another function.
All it hasto do isto call the other function using unpack(ar g) asargument: unpack will return all
valuesin ar g, which will be passed to the other function. A good example of this useisafunction to
write formatted text. Lua provides separate functions to format text (st r i ng. f or mat , similar to the
spri ntf function fromthe C library) and to writetext (i o. wri t). Of coursg, it is easy to combine
both functions into a single one, except that this new function has to pass a variable number of values to
format. Thisisajob for unpack:

function fwite (fnt, ...)
return io.wite(string.format(fnt, unpack(arg)))
end

Programming in Lua

Page 71 of 351

Programming in Lua

Part |. The Language Chapter 5. Functions

5.3 - Named Arguments

The parameter passing mechanism in Luais positional: When we call afunction, arguments match
parameters by their positions. The first argument gives the value to the first parameter, and so on.
Sometimes, however, it is useful to specify the arguments by name. To illustrate this point, let us
consider the function r enane (from the os library), which renames afile. Quite often, we forget which
name comes first, the new or the old; therefore, we may want to redefine this function to receive its two
arguments by name;

-- invalid code
renane(ol d="tenp.lua", new="tenpl.|lua")

Lua has no direct support for that syntax, but we can have the same final effect, with a small syntax
change. Theidea hereisto pack all arguments into atable and use that table as the only argument to the
function. The special syntax that Lua provides for function calls, with just one table constructor as
argument, helps the trick:

renanme{ol d="tenp.lua", new="tenpl.lua"}

Accordingly, we definer enanme with only one parameter and get the actual arguments from this
parameter:

function renane (arg)
return os.renane(arg.old, arg.new)
end

This style of parameter passing is especially helpful when the function has many parameters, and most
of them are optional. For instance, afunction that creates a new window in a GUI library may have
dozens of arguments, most of them optional, which are best specified by names:

w = Wndow x=0, y=0, w dth=300, hei ght=200,
title = "Lua", background="Dbl ue",
border = true

}

The W ndow function then has the freedom to check for mandatory arguments, add default values, and

Page 72 of 351

the like. Assuming a primitive W ndow function that actually creates the new window (and that needs
al arguments), we could define W ndow as follows:

function Wndow (options)
-- check mandatory options

I f type(options.title) ~= "string" then
error("no title")

el seif type(options.w dth) ~= "nunber" then
error("no wdth")

el seif type(options. height) ~= "nunber"” then
error("no height")

end

-- everything else is optional
_Wndow(options.title,

options.x or O, -- default val ue
options.y or O, -- default val ue
options.w dth, options. height,

opti ons. background or "white", -- default
opti ons. bor der -- default is false (nil)

end

Programming in Lua

Page 73 of 351

Programming in Lua

Part |. The Language Chapter 6. More about Functions

6 - More about Functions

Functionsin Lua are first-class values with proper lexical scoping.

What does it mean for functions to be "first-class values'? It means that, in Lua, afunction isavalue
with the same rights as conventional values like numbers and strings. Functions can be stored in
variables (both global and local) and in tables, can be passed as arguments, and can be returned by other
functions.

What does it mean for functions to have "lexical scoping"? It means that functions can access variables
of its enclosing functions. (It also means that L ua contains the lambda calculus properly.) Aswe will see
in this chapter, this apparently innocuous property brings great power to the language, because it allows
us to apply in Lua many powerful programming techniques from the functional-language world. Even if
you have no interest at al in functional programming, it isworth learning alittle about how to explore
those techniques, because they can make your programs smaller and simpler.

A somewhat difficult notion in Luaisthat functions, like all other values, are anonymous; they do not
have names. When we talk about a function name, say pr i nt , we are actually talking about a variable
that holds that function. Like any other variable holding any other value, we can manipulate such
variables in many ways. The following example, although alittle silly, shows the point:

a={p = print}

a.p("Hello Wwrld") --> Hello Wirld

print = math.sin -- “print' nowrefers to the sine function
a.p(print(1)) --> 0.841470

sin = a.p -- "sin'" nowrefers to the print function
sin(10, 20) --> 10 20

Later we will see more useful applications for this facility.

If functions are values, are there any expressions that create functions? Y es. In fact, the usual way to
write afunctionin Lua, like

function foo (x) return 2*x end

isjust an instance of what we call syntactic sugar; in other words, it isjust a pretty way to write

Page 74 of 351

foo = function (x) return 2*x end

That is, afunction definition isin fact a statement (an assignment, more specifically) that assigns avalue
of type" functi on" toavariable. We can seethe expressionf unction (x) ... endasa
function constructor, just as{ } isatable constructor. We call the result of such function constructors an
anonymous function. Although we usually assign functions to global names, giving them something like
aname, there are several occasions when functions remain anonymous. L et us see some examples.

Thetable library providesafunctiont abl e. sor t , which receives atable and sortsits elements. Such
afunction must allow unlimited variations in the sort order: ascending or descending, numeric or
aphabetical, tables sorted by a key, and so on. Instead of trying to provide all kinds of options, sor t
provides a single optional parameter, which isthe order function: a function that receives two elements
and returns whether the first must come before the second in the sort. For instance, suppose we have a
table of records such as

network = {

{nanme = "grauna", |P = "210.26.30.34"},
{nane = "arraial", IP = "210.26.30.23"},
{nanme = "lua", | P = "210. 26. 23. 12"},
{nane = "derain", |P = "210.26.23.20"},

}

If we want to sort the table by the field nane, in reverse alphabetical order, we just write

tabl e. sort (network, function (a,b)
return (a.nanme > b. nane)
end)

See how handy the anonymous function isin that statement.

A function that gets another function as an argument, such assor t , iswhat we call ahigher-order
function. Higher-order functions are a powerful programming mechanism and the use of anonymous
functions to create their function arguments is a great source of flexibility. But remember that higher-
order functions have no special rights; they are a ssmple consequence of the ability of Luato handle
functions as first-class values.

To illustrate the use of functions as arguments, we will write a naive implementation of a common
higher-order function, pl ot , that plots a mathematical function. Below we show this implementation,
using some escape sequences to draw on an ANSI terminal. (Y ou may need to change these control
sequences to adapt this code to your terminal type.)

Page 75 of 351

function eraseTerm nal ()
lo.write("\27[2J3")
end

-- wites an “*' at colum "x' , row V'
function mark (x,y)

lo.write(string.format ("\27][%; %dH", vy, X))
end

-- Term nal size
Ternti ze = {w = 80, h = 24}

-- plot a function
-- (assune that domain and inmage are in the range [-1,1])
function plot (f)
eraseTerm nal ()
for i=1, Ternti ze.w do
|l ocal x = (i/Ternize.w)*2 - 1
local vy = (f(x) + 1)/2 * Ternfi ze. h
mark(i, vy)
end
lo.read() -- wait before spoiling the screen
end

With that definition in place, you can plot the sine function with acall like

pl ot (function (x) return math.sin(x*2*math. pi) end)

(We need to massage the data a little to put values in the proper range.) When we call pl ot , its
parameter f gets the value of the given anonymous function, which isthen called inside the for loop
repeatedly to provide the values for the plotting.

Because functions are first-class values in Lua, we can store them not only in global variables, but also
in local variables and in table fields. Aswe will see later, the use of functionsin table fieldsis akey
ingredient for some advanced uses of Lua, such as packages and object-oriented programming.

Programming in Lua

Page 76 of 351

Programming in Lua

Part |. The Language Chapter 6. More about Functions

6.1 - Closures

When afunction is written enclosed in another function, it has full accessto local variables from the
enclosing function; this featureis called lexical scoping. Although that may sound obvious, it is not.
Lexical scoping, plusfirst-class functions, is a powerful concept in a programming language, but few
languages support that concept.

Let us start with a simple example. Suppose you have alist of student names and a table that associates
names to grades; you want to sort the list of names, according to their grades (higher gradesfirst). You
can do thistask as follows:

nanes = {"Peter", "Paul", "Mary"}
grades = {Mary = 10, Paul = 7, Peter = 8}
tabl e. sort (nanmes, function (nl, n2)
return grades[nl] > grades[n2] -- conpare the grades
end)

Now, suppose you want to create a function to do this task:

function sortbygrade (nanmes, grades)
tabl e. sort (nanes, function (nl, n2)
return grades[nl] > grades[n2] -- conpare the grades
end)
end

The interesting point in the example is that the anonymous function givento sor t accessesthe
parameter gr ades, which islocal to the enclosing function sor t bygr ade. Inside this anonymous
function, gr ades is neither aglobal variable nor alocal variable. We call it an external local variable,
or an upvalue. (The term "upvalue" is alittle misleading, because gr ades isavariable, not avalue.
However, this term has historical rootsin Luaand it is shorter than "external local variable".)

Why isthat so interesting? Because functions are first-class values. Consider the following code:
function newCounter ()

local i =0
return function () -- anonynous function

Page 77 of 351

I =i + 1
return i
end
end

cl = newCounter ()
print(cl()) -->1
print(cl()) --> 2

Now, the anonymous function uses an upvalue, i , to keep its counter. However, by the time we call the
anonymous function, i isalready out of scope, because the function that created that variable
(newCount er) has returned. Nevertheless, Lua handles that situation correctly, using the concept of
closure. Simply put, aclosureis afunction plus all it needs to accessits upvalues correctly. If we call
newCount er again, it will create anew local variablei , so we will get a new closure, acting over that
new variable:

c2 = newCounter ()

print(c2()) -->1
print(cl()) -->3
print(c2()) -->2

So, c1 and c2 are different closures over the same function and each acts upon an independent
instantiation of the local variablei . Technically speaking, what isavalue in Luaisthe closure, not the
function. The function itself isjust a prototype for closures. Nevertheless, we will continue to use the
term "function” to refer to a closure whenever there is no possibility of confusion.

Closures provide a valuable tool in many contexts. As we have seen, they are useful as argumentsto
higher-order functions such assor t . Closures are valuable for functions that build other functions too,
like our newCount er example; this mechanism allows Lua programs to incorporate fancy
programming techniques from the functional world. Closures are useful for callback functions, too. The
typical example here occurs when you create buttons in atypical GUI toolkit. Each button has a callback
function to be called when the user presses the button; you want different buttons to do dightly different
things when pressed. For instance, adigital calculator needs ten similar buttons, one for each digit. Y ou
can create each of them with afunction like the next one:

function digitButton (digit)
return Button{ |abel = digit,
action = function ()
add to_display(digit)
end

end

Page 78 of 351

In this example, we assume that But t on isatoolkit function that creates new buttons; | abel isthe

button label; and act i on isthe callback function to be called when the button is pressed. (It is actually
aclosure, because it accesses the upvalue di gi t .) The callback function can be called along time after
di gi t But t on did itstask and after the local variable di gi t went out of scope, but it can still access

that variable.

Closures are valuable also in a quite different context. Because functions are stored in regular variables,
we can easily redefine functions in Lua, even predefined functions. Thisfacility is one of the reasons
Luais so flexible. Frequently, however, when you redefine a function you need the original functionin
the new implementation. For instance, suppose you want to redefine the function si n to operate in
degreesinstead of radians. This new function must convert its argument, and then call the original si n
function to do the real work. Y our code could look like

oldSin = math. sin
mat h. sin = function (x)

return ol dSi n(x*mat h. pi / 180)
end

A cleaner way to do that is asfollows:

do
| ocal oldSin = math.sin
| ocal k = math. pi/ 180
mat h. sin = function (x)
return ol dSi n(x*k)
end
end

Now, we keep the old version in a private variable; the only way to accessit is through the new version.

Y ou can use this same feature to create secure environments, also called sandboxes. Secure
environments are essential when running untrusted code, such as code received through the Internet by a
server. For instance, to restrict the files a program can access, we can redefine the open function (from

thei o library) using closures:

do
| ocal ol dOpen = i 0. open
| 0. open = function (filenane, node)
I f access_OK(fil enane, node) then
return ol dOpen(fil enane, node)
el se
return nil, "access denied"

Page 79 of 351

end
end
end

What makes this example nice is that, after that redefinition, there is no way for the program to call the
unrestricted open, except through the new, restricted version. It keeps the insecure version as a private
variable in aclosure, inaccessible from the outside. With this facility, you can build Lua sandboxesin
Luaitself, with the usual benefit: flexibility. Instead of a one-size-fits-all solution, Lua offers you a meta-
mechanism, so that you can tailor your environment for your specific security needs.

Programming in Lua

Page 80 of 351

Programming in Lua

Part |. The Language Chapter 6. More about Functions

6.2 - Non-Global Functions

An obvious consequence of first-class functionsis that we can store functions not only in global
variables, but also in table fields and in local variables.

We have already seen several examples of functionsin table fields. Most Lualibraries use this
mechanism (e.g., 1 0. r ead, mat h. si n). To create such functionsin Lua, we only have to put together
the regular syntax for functions and for tables:

Lib = {}
Lib.foo = function (x,y) return x + y end
Li b.goo = function (x,y) return x - y end

Of course, we can also use constructors:

Lib = {
foo = function (x,y) return x + y end,
goo = function (x,y) return x - y end
}

Moreover, Lua offers yet another syntax to define such functions:

Lib = {}

function Lib.foo (x,Vy)
return x +vy

end

function Lib.goo (x,Y)
return x - vy

end

This last fragment is exactly equivalent to the first example.

When we store afunction into alocal variable we get alocal function, that is, afunction that is restricted
to a given scope. Such definitions are particularly useful for packages. Because Lua handles each chunk
as afunction, achunk may declare local functions, which are visible only inside the chunk. Lexical
scoping ensures that other functions in the package can use these local functions:

Page 81 of 351

| ocal f = function (...)
end

| ocal g = function (...)

%kj -- external local "f' is visible here
ena- |
L ua supports such uses of local functions with a syntactic sugar for them:
| ocal function f (...)
en;j.

A subtle point arises in the definition of recursive local functions. The naive approach does not work
here:

| ocal fact = function (n)

If n==0then return 1
el se return n*fact(n-1) -- buggy
end

end

When Lua compilesthecall f act (n- 1), inthe function body, thelocal f act isnot yet defined.
Therefore, that expression callsaglobal f act , not the local one. To solve that problem, we must first
define the local variable and then define the function:

| ocal fact

fact = function (n)
If n ==0 then return 1
el se return n*fact(n-1)
end

end

Now thef act inside the function refersto the local variable. Its value when the function is defined
does not matter; by the time the function executes, f act aready hastheright value. That isthe way
Lua expands its syntactic sugar for local functions, so you can useit for recursive functions without

worrying:

| ocal function fact (n)

Page 82 of 351

If n==0then return 1
el se return n*fact(n-1)
end

end

Of course, thistrick does not work if you have indirect recursive functions. In such cases, you must use
the equivalent of an explicit forward declaration:

|l ocal f, g -- forward' declarations

function g ()

F0)

end

function f ()

a()

end

Programming in Lua

Page 83 of 351

Programming in Lua

Part |. The Language Chapter 6. More about Functions

6.3 - Proper Tail Calls

Another interesting feature of functionsin Luaisthat they do proper tail calls. (Several authors use the
term proper tail recursion, although the concept does not involve recursion directly.)

A tail call isakind of goto dressed asacall. A tail call happens when afunction calls another asits last
action, so it has nothing else to do. For instance, in the following code, the call to g isatail call:

function f (x)
return g(x)
end

After f callsg, it has nothing else to do. In such situations, the program does not need to return to the
calling function when the called function ends. Therefore, after thetail call, the program does not need
to keep any information about the calling function in the stack. Some language implementations, such as
the Luainterpreter, take advantage of this fact and actually do not use any extra stack space when doing
atall cal. We say that those implementations support proper tail calls.

Because a proper tail call uses no stack space, there is no limit on the number of "nested"” tail callsthat a
program can make. For instance, we can call the following function with any number as argument; it
will never overflow the stack:

function foo (n)
if n >0 then return foo(n - 1) end
end

A subtle point when we use proper tail callsiswhat isatail call. Some obvious candidates fail the
criteriathat the calling function has nothing to do after the call. For instance, in the following code, the
call tog isnot atail call:

function f (x)
9(x)

return
end

The problem in that example isthat, after calling g, f still hasto discard occasional results from g

Page 84 of 351

before returning. Similarly, al the following calls fail the criteria:

return g(x) + 1 -- must do the addition
return x or g(x) -- nmust adjust to 1 result
return (g(x)) -- nmust adjust to 1 result

InLua, only acal intheformatret urn g(...) isatail call. However, both g and its arguments can
be complex expressions, because L ua evaluates them before the call. For instance, the next call is atail
cal:

return x[i].foo(x[j] + a*b, i +j)

As| said earlier, atail call isakind of goto. As such, a quite useful application of proper tail callsin Lua
Is for programming state machines. Such applications can represent each state by a function; to change
state isto go to (or to call) a specific function. As an example, let us consider a simple maze game. The
maze has several rooms, each with up to four doors. north, south, east, and west. At each step, the user
enters a movement direction. If thereisadoor in that direction, the user goes to the corresponding room,
otherwise, the program prints awarning. The goal isto go from an initial room to afinal room.

Thisgameisatypica state machine, where the current room is the state. We can implement such maze
with one function for each room. We use tail calls to move from one room to another. A small maze
with four rooms could look like this:

function rooml ()
| ocal nove = io.read()
I f nmove == "south" then return roon8()
el seif nove == "east" then return roon2()
el se print("invalid nove")
return roomnil() -- stay in the sane room
end
end

function roon? ()

| ocal nove = io.read()
I f nove == "south" then return roonmd()
el seif nove == "west" then return roonil()

el se print("invalid nove")
return roon()
end
end

function roon8 ()

Page 85 of 351

| ocal nove = io.read()
I f nove == "north" then return roomil()
el seif nove == "east" then return roon#()
el se print("invalid nove")
return roonB()
end
end

function roomd ()
print("congratilations!")
end

We start the game with a call to the initial room:
rooml()

Without proper tail calls, each user move would create a new stack level. After some number of moves,
there would be a stack overflow. With proper tail cals, thereis no limit to the number of movesthat a
user can make, because each move actually performs a goto to another function, not a conventional call.

For this ssmple game, you may find that a data-driven program, where you describe the rooms and
movements with tables, is a better design. However, if the game has severa specia situationsin each
room, then this state-machine design is quite appropriate.

Programming in Lua

Page 86 of 351

Programming in Lua

Part |. The L anguage Chapter 7. Iterators and the Generic for

7 - lterators and the Generic for

In this chapter, we cover how to write iterators for the generic for. We start with simple iterators, then
we learn how to use all the power of the generic for to write more efficient iterators.

Programming in Lua

Page 87 of 351

Programming in Lua

Part |. The L anguage Chapter 7. Iterators and the Generic for

7.1 - lterators and Closures

Aniterator is any construction that allows you to iterate over the elements of a collection. In Lua, we
typically represent iterators by functions. Each time we call that function, it returns a"next" element
from the collection.

Any iterator needs to keep some state between successive calls, so that it knows whereit is and how to
proceed from there. Closures provide an excellent mechanism for that task. Remember that aclosureisa
function that accesses one or more local variables from its enclosing function. Those variables keep their
values across successive calls to the closure, allowing the closure to remember whereit isalong a
traversal. Of course, to create a new closure we must also create its external local variables. Therefore, a
closure construction typically involves two functions: the closure itself; and afactory, the function that
creates the closure.

Asasimple example, let uswrite asimpleiterator for alist. Unlikei pai r s, thisiterator does not
return the index of each element, only the value:

function list _iter (t)
local i =0
| ocal n = table.getn(t)
return function ()
I =i + 1
if i <= n then return t[i] end
end
end

Inthisexample, | i st _i t er isthefactory. Each time we call it, it creates a new closure (the iterator
itself). That closure keepsits state in its external variables (t , i , and n) so that, each time we call it, it
returns a next value from the list t . When there are no more values in the list, the iterator returns nil.
We can use such iterator with awhile;

t = {10, 20, 30}

iter = list _iter(t) -- Ccreates the iterator
while true do
| ocal elenment = iter() -- calls the iterator
I f element == nil then break end

Page 88 of 351

print (el enent)
end

However, it iseasier to use the generic for. After all, it was designed for that kind of iteration:

t = {10, 20, 30}

for elenment in list iter(t) do
print (el enent)

end

The generic for does all the bookkeeping from an iteration loop: It calls the iterator factory; keeps the
iterator function internally, so we do not need thei t er variable; callsthe iterator at each new iteration;
and stops the loop when the iterator returns nil. (Later we will see that the generic for actually does
more than that.)

As amore advanced example, we will write an iterator to traverse al the words from the current input
file. To do thistraversal, we need to keep two values. the current line and where we are in that line. With
this data, we can always generate the next word. To keep it, we use two external local variables, | i ne
and pos:

function allwords ()

local line = io.read() -- current |ine
| ocal pos =1 -- current position in the line
return function () -- iterator function
while line do -- repeat while there are lines
|l ocal s, e = string.find(line, "%w", pos)
if s then -- found a word?
pos = e + 1 -- next position is after this word
return string.sub(line, s, e) -- return the word
el se
line = io.read() -- word not found; try next line
pos =1 -- restart fromfirst position
end
end
return nil -- no nore lines: end of traversal
end
end

The main part of theiterator functionisthecall tost ri ng. fi nd. Thiscall searchesfor aword in the
current line, starting at the current position. It describes a"word" using the pattern '‘%w+', which matches
one or more aphanumeric characters. If it finds the word, the function updates the current position to the
first character after the word and returns that word. (The st ri ng. sub call extracts a substring from

Page 89 of 351

| i ne between the given positions). Otherwise, the iterator reads a new line and repeats the search. If
there are no more lines, it returns nil to signal the end of the iteration.

Despite its complexity, the use of al | wor ds is straightforward:

for word in allwrds() do
print (word)
end

Thisisacommon situation with iterators: They may be difficult to write, but are easy to use. Thisis not
a big problem; more often than not, end users programming in Lua do not define iterators, but only use
those provided by the application.

Programming in Lua

Page 90 of 351

Programming in Lua

Part |. The L anguage Chapter 7. Iterators and the Generic for

7.2 - The Semantics of the Generic for

One drawback of those previousiteratorsis that we need to create a new closure for each new loop. For
most situations, thisisnot areal problem. For instance, intheal | wor ds iterator, the cost of creating
one single closure is negligible compared to the cost of reading awhole file. However, in afew
situations this overhead can be undesirable. In such cases, we can use the generic for itself to keep the
iteration state.

We saw that the generic for keegpsthe iterator function internally, during the loop. Actualy, it keeps
three values: The iterator function, an invariant state, and a control variable. Let us see the details now.

The syntax for the generic for isasfollows:

for <var-list> in <exp-list> do
<body>
end

where<var - | i st > isalist of one or more variable names, separated by commas, and <exp-1i st >
isalist of one or more expressions, also separated by commas. More often than not, the expression list
has only one element, a call to an iterator factory. For instance, in the code

for k, v in pairs(t) do
print(k, v)
end

thelist of variablesisk, v;thelist of expressions hasthe single element pai r s(t) . Often thelist of
variables has only one variable too, asin

for line in io.lines() do
lo.wite(line, "\n")
end

We call thefirst variable in the list the control variable. Its value is never nil during the loop, because
when it becomes nil the loop ends.

Thefirst thing the for doesisto evaluate the expressions after the in. These expressions should result in

Page 91 of 351

the three values kept by the for: the iterator function, the invariant state, and the initial value for the
control variable. Like in amultiple assignment, only the last (or the only) element of the list can result in
more than one value; and the number of valuesis adjusted to three, extra values being discarded or nils
added as needed. (When we use simple iterators, the factory returns only the iterator function, so the
invariant state and the control variable get nil.)

After thisinitialization step, the for calls the iterator function with two arguments: the invariant state and
the control variable. (Notice that, for the for structure, the invariant state has no meaning at all. It only
gets this value from the initialization step and passes it when it calls the iterator function.) Then the for
assigns the values returned by the iterator function to variables declared by its variable list. If the first
value returned (the one assigned to the control variable) is nil, the loop terminates. Otherwise, the for
executes its body and calls the iteration function again, repeating the process.

More precisely, a construction like

for var_1, ..., var_n in explist do block end
Is equivalent to the following code:

do

| ocal f, s, _var = explist
while true do

| ocal var_ 1, ... , var_n = f(_s, _var)
~var = var_1
if _var == nil then break end
bl ock
end

end

So, if our iterator function isf, the invariant stateis s, and the initial value for the control variableis ag,
the control variable will loop over the values a; = f(s, ag), a, = f(s, a;), and so on, until g isnil. If the
for has other variables, they ssimply get the extravalues returned by each call tof .

Programming in Lua

Page 92 of 351

Programming in Lua

Part |. The L anguage Chapter 7. Iterators and the Generic for

7.3 - Stateless lterators

Asthe nameimplies, a stateless iterator is an iterator that does not keep any state by itself. Therefore, we
may use the same stateless iterator in multiple loops, avoiding the cost of creating new closures.

On each iteration, the for loop callsitsiterator function with two arguments: the invariant state and the
control variable. A stateless iterator generates the next element for the iteration using only these two
arguments. A typical example of thiskind of iterator isi pai r s, which iterates over al elementsin an
array, asillustrated next:

a = {"one", "two", "three"}

for i, vin ipairs(a) do
print(i, v)

end

The state of the iteration is the table being traversed (the invariant state, which does not change during
the loop), plus the current index (the control variable). Bothi pai r s and theiterator it returns are quite
simple; we could write them in Lua as follows:

function iter (a, 1)
i =i + 1
| ocal v = a[i]
I f v then
return i, v
end
end

function ipairs (a)
return iter, a, O
end

When Luacallsi pai rs(a) inafor loop, it getsthree values: thei t er function astheiterator, a as
the invariant state, and zero astheinitial value for the control variable. Then, Luacallsi ter (a, 0),
whichresultsin1, a[1] (unlessa[1] isalready nil). Inthe second iteration, it callsi ter (a, 1),
which resultsin 2, a[2], and so on, until the first nil element.

The pai r s function, which iterates over all elementsin atable, is similar, except that the iterator

Page 93 of 351

function isthe next function, which isa primitive function in Lua
function pairs (t)

return next, t, nil
end

Thecal next (t, k),wherek isakey of thetablet , returns a next key in the table, in an arbitrary
order. (It returns also the value associated with that key, as a second return value.) The call next (t,
ni 1) returnsafirst pair. When there are no more pairs, next returns nil.
Some people prefer to use next directly, without calling pai r s:

for k, v.in next, t do

end

Remember that the expression list of the for 1oop is adjusted to three results, so Luagetsnext , t , and
nil, exactly what it getswhen it callspai rs(t) .

Programming in Lua

Page 94 of 351

Programming in Lua

Part |. The L anguage Chapter 7. Iterators and the Generic for

7.4 - Iterators with Complex State

Frequently, an iterator needs to keep more state than fits into a single invariant state and a control
variable. The simplest solution isto use closures. An alternative solution isto pack al it needsinto a
table and use this table as the invariant state for the iteration. Using atable, an iterator can keep as much
data as it needs along the loop. Moreover, it can change that data as it goes. Although the state is always
the same table (and therefore invariant), the table contents change along the loop. Because such iterators
have all their datain the state, they typically discard the second argument provided by the generic for
(the iterator variable).

As an example of thistechnique, we will rewrite the iterator al | wor ds, which traverses all the words
from the current input file. Thistime, we will keep its state using a table with two fields, | i ne and pos.

The function that starts the iteration is simple. It must return the iterator function and the initial state:

| ocal iterator -- to be defined | ater

function allwords ()
| ocal state = {line = io.read(), pos = 1}
return iterator, state

end

Thei t er at or function doesthe rea work:

function iterator (state)
while state.line do -- repeat while there are lines

-- search for next word

| ocal s, e = string.find(state.line, "%w", state.pos)

i f s then -- found a word?
-- update next position (after this word)
state.pos = e + 1
return string.sub(state.line, s, e)

el se -- word not found
state.line = io.read() -- try next line...
state.pos =1 -- ... fromfirst position
end
end

Page 95 of 351

return nil -- no nore lines: end | oop
end

Whenever it is possible, you should try to write stateless iterators, those that keep all their state in the for
variables. With them, you do not create new objects when you start aloop. If you cannot fit your
iteration into that model, then you should try closures. Besides being more elegant, typically aclosureis
more efficient than an iterator using tables: First, it is cheaper to create a closure than atable; second,
access to upvalues is faster than access to table fields. Later we will see yet another way to write
iterators, with coroutines. Thisisthe most powerful solution, but alittle more expensive.

Programming in Lua

Page 96 of 351

Programming in Lua

Part |. The L anguage Chapter 7. Iterators and the Generic for

7.5 -True lterators

The name "iterator” is alittle misleading, because our iterators do not iterate: What iteratesis the for
loop. Iterators only provide the successive values for the iteration. Maybe a better name would be
"generator”, but "iterator” is already well established in other languages, such as Java.

However, there is another way to build iterators wherein iterators actually do the iteration. When we use
such iterators we do not write aloop; instead, we simply call the iterator with an argument that describes
what the iterator must do at each iteration. More specifically, the iterator receives as argument afunction
that it callsinside its loop.

As aconcrete example, let us rewrite once morethe al | wor ds iterator using this style:

function allwords (f)
-- repeat for each line in the file
for I inio.lines() do
-- repeat for each word in the |ine
for win string.gfind(l, "%w") do
-- call the function
f(w
end
end
end

To use such iterator, we must supply the loop body as a function. If we only want to print each word, we
simply usepri nt :

al l words(print)

More often, we use an anonymous function as the body. For instance, the next code fragment counts
how many times the word "hello" appearsin the input file:

| ocal count = 0
al l words(function (w)

if w== "hello" then count = count + 1 end
end)

Page 97 of 351

print(count)

The same task, written with the previous iterator style, isnot very different:

| ocal count = 0
for win allwords() do
If w== "hello" then count = count + 1 end
end
print (count)

True iterators were popular in older versions of Lua, when the language did not have the for statement.
How do they compare with generator-style iterators? Both styles have approximately the same overhead:
one function call per iteration. On the one hand, it is easier to write the iterator with this second style
(although we can recover this easiness with coroutines). On the other hand, the generator style is more
flexible. First, it allows two or more parallel iterations. (For instance, consider the problem of iterating
over two files comparing them word by word.) Second, it allows the use of break and return inside the
iterator body. (With atrueiterator, areturn returns from the anonymous function, not from the function
doing the iteration.)

Programming in Lua

Page 98 of 351

Programming in Lua

Part |. The Language Chapter 8. Compilation, Execution, and Errors

8 - Compilation, Execution, and Errors

Although we refer to Lua as an interpreted language, L ua always precompiles source code to an
intermediate form before running it. (Thisis not abig deal: Most interpreted languages do the same.)
The presence of a compilation phase may sound out of place in an interpreted language like Lua.
However, the distinguishing feature of interpreted languages is not that they are not compiled, but that
any compiler is part of the language runtime and that, therefore, it is possible (and easy) to execute code
generated on the fly. We may say that the presence of afunction likedof i | e iswhat allows Luato be
called an interpreted language.

Previously, we introduced dof i | e asakind of primitive operation to run chunks of Luacode. The
dof i | e function isactually an auxiliary function; | oadf i | e doesthe hard work. Likedofi | e,

| oadfi | e asoloadsaluachunk from afile, but it does not run the chunk. Instead, it only compiles
the chunk and returns the compiled chunk as a function. Moreover, unlikedof i | e, | oadf i | e does
not raise errors, but instead returns error codes, so that we can handle the error. We could define

dofi | e asfollows:

function dofile (filenane)
| ocal f = assert(loadfile(filenane))
return f()

end

Notetheuseof assert toraiseanerrorif | oadfi | e fails.

For simple tasks, dof i | e ishandy, asit doesthe wholejob in one call. However, | oadfi | e ismore
flexible. In case of errors, | oadf i | e returnsnil plus the error message, which allows us to handle the
error in customized ways. Moreover, if we need to run afile several times, we cancall | oadfi | e once
and call itsresult several times. Thisis much cheaper than several callsto dof i | e, because the
program compiles the file only once.

Thel oadst ri ng functionissimilar to| oadf i | e, except that it reads its chunk from a string, not
from afile. For instance, after the code

f = loadstring("i =1 + 1")
f will be afunction that, when invoked, executesi = 1 + 1:

Page 99 of 351

I =0
f(); print(i) --> 1
f(); print(i) --> 2

Thel oadst ri ng function is powerful; it must be used with care. It is also an expensive function
(when compared to its aternatives) and may result in incomprehensible code. Before you use it, make
sure that there isno simpler way to solve the problem at hand.

Luatreats any independent chunk as the body of an anonymous function. For instance, for the chunk
"a = 1",1 oadst ri ng returns the equivalent of

function () a =1 end
Like any other function, chunks can declare local variables and return values:

f = loadstring("local a = 10; return a + 20")
print(f()) --> 30

Both| oadstri ng and| oadfi | e never raise errors. In case of any kind of error, both functions
return nil plus an error message:

print(loadstring("i i"))
-->nil [string "i i"]:1: "= expected near i

Moreover, both functions never have any kind of side effect. They only compile the chunk to an internal
representation and return the result, as an anonymous function. A common mistake is to assume that

| oadfi | e (or| oadst ri ng) defines functions. In Lua, function definitions are assignments; as such,
they are made at runtime, not at compile time. For instance, suppose we have afilef oo. | ua likethis:

-- file "foo.lua
function foo (x)
print(x)
end
We then run the command
f = loadfile("foo.lua")
After thiscommand, f oo iscompiled, but it is not defined yet. To define it, you must run the chunk:

f() -- defines "foo

Page 100 of 351

foo("ok") --> ok

If you want to do a quick-and-dirty dost r i ng (i.e., to load and run a chunk) you may call the result
from| oadst ri ng directly:

| oadstring(s) ()

However, if thereis any syntax error, | oadst ri ng will return nil and the final error message will be
an"attenpt to call a nil val ue". For clearer error messages, useassert:

assert (l oadstring(s)) ()

Usually, it does not make senseto use |l oadst ri ng on aliteral string. For instance, the code

f = loadstring("i =1 + 1")
Is roughly equivalent to
f = function () i =i + 1 end

but the second code is much faster, because it is compiled only once, when the chunk is compiled. In the
first code, each call tol oadst ri ng involves a new compilation. However, the two codes are not
completely equivalent, because| oadst r i ng does not compile with lexical scoping. To seethe
difference, let us change the previous examples a little:

i =0
oadstring("i

cal
I
function () i

| o
f i+ 1")
g i + 1 end

The g function manipulatesthelocal i , as expected, but f manipulatesaglobal i , because
| oadst ri ng always compilesits strings in a global environment.

The most typical use of | oadst ri ng isto run external code, that is, pieces of code that come from
outside your program. For instance, you may want to plot a function defined by the user; the user enters
the function code and then you use | oadst r i ng to evaluate it. Note that | oadst r i ng expectsa
chunk, that is, statements. If you want to evaluate an expression, you must prefix it with return, so that
you get a statement that returns the value of the given expression. See the example:

print "enter your expression:"”
|l ocal | = io0.read()
| ocal func = assert(loadstring("return ™ .. [|))

Page 101 of 351

print("the value of your expression is " .. func())
The function returned by | oadst ri ng isaregular function, so you can call it several times:

print "enter function to be plotted (with variable "x'):"

|l ocal | = io.read()

| ocal f = assert(loadstring("return ™ .. [|))

for i=1,20 do
X =1 -- global "x'" (to be visible fromthe chunk)
print(string.rep("*", f()))

end

In aproduction-quality program that needs to run external code, you should handle any errors reported
by | oadst ri ng. Moreover, if the code cannot be trusted, you may want to run the new chunk in a
protected environment, to avoid unpleasant side effects when running the code.

Programming in Lua

Page 102 of 351

Programming in Lua

Part |. The Language Chapter 8. Compilation, Execution, and Errors

8.1 - The r equi r e Function

Lua offers ahigher-level function to load and run libraries, called r equi r e. Roughly, r equi r e does
the same job asdof i | e, but with two important differences. First, r equi r e searchesfor thefileina
path; second, r equi r e controls whether afile has already been run to avoid duplicating the work.
Because of these features, r equi r e isthe preferred function in Luafor loading libraries.

The path used by r equi r e isalittle different from typical paths. Most programs use paths as alist of
directories wherein to search for a given file. However, ANSI C (the abstract platform where Lua runs)
does not have the concept of directories. Therefore, the path used by r equi r e isalist of patterns, each
of them specifying an alternative way to transform avirtual file name (the argument tor equi r e) into a
real file name. More specifically, each component in the path is a file name containing optional
interrogation marks. For each component, r equi r e replaces each "?” by the virtua file name and
checks whether there is afile with that name; if not, it goes to the next component. The componentsin a
path are separated by semicolons (a character seldom used for file names in most operating systems).

For instance, if the path is

?:?.1lua;c:\wi ndows\ ?:/usr/local /lual/?/?.|ua

thenthecal requi re"lili" will try to open the following files:
il

lili.lua

c:\w ndows\lili
fusr/local/lua/lili/lili.lua

The only thingsthat r equi r e fixesisthe semicolon (as the component separator) and the interrogation
mark; everything else (such as directory separators or file extensions) is defined in the path.

To determineits path, r equi r e first checks the global variable LUA PATH. If the value of LUA PATH
Isastring, that string is the path. Otherwise, r equi r e checks the environment variable LUA PATH.
Finally, if both checksfail, r equi r e uses afixed path (typicaly " ?; ?. | ua", athoughitiseasy to
change that when you compile Lua).

The other main job of r equi r e isto avoid loading the same file twice. For that purpose, it keeps a
table with the names of all loaded files. If arequired fileisaready in the table, r equi r e simply

Page 103 of 351

returns. The table keeps the virtual names of the loaded files, not their real names. Therefore, if you load
the same file with two different virtual names, it will be loaded twice. For instance, the command
require"foo" followedbyrequire"foo.lua",withapathlike"?; ?. [ua", will load thefile
f 00. | ua twice. Y ou can access this control table through the global variable L OADED. Using this
table, you can check which files have been loaded; you can also fool r equi r e into running afile twice.
For instance, after asuccessful r equi re" f oo", LOADED "f 00"] will not benil. If you then
assignnil to _LOADED "f 00"], asubsequent r equi r e" f 00" will runthefile again.

A component does not need to have interrogation marks; it can be afixed file name, such asthe last
component in the following path:

?:?.1lua;/usr/local/default.|lua

In this case, whenever r equi r e cannot find another option, it will run this fixed file. (Of course, it only
makes sense to have a fixed component as the last component in a path.) Beforer equi r e runs a chunk,
it defines aglobal variable REQUI REDNAIVE containing the virtual name of the file being required. We
can use these facilities to extend the functionality of r equi r e. In an extreme example, we may set the
path to something like" / usr/ | ocal /| ua/ newr equi re. | ua", sothat every call tor equi r e
runsnewr equi r e. | ua, which can then use the value of _ REQUI REDNAME to actually load the
required file.

Programming in Lua

Page 104 of 351

Programming in Lua

Part |. The Language Chapter 8. Compilation, Execution, and Errors

8.2 - C Packages

Because it is easy to interface Luawith C, it is also easy to write packages for Luain C. Unlike packages
written in Lua, however, C packages need to be loaded and linked with an application before use. In
most popular systems, the easiest way to do that is with a dynamic linking facility. However, this facility
is not part of the ANSI C specification; that is, there is no portable way to implement it.

Usually, Lua does not include any facility that cannot be implemented in ANSI C. However, dynamic
linking is different. We can view it as the mother of all other facilities: Once we have it, we can
dynamically load any other facility that isnot in Lua. Therefore, in this particular case, Lua breaks its
compatibility rules and implements a dynamic linking facility for several platforms, using conditional
code. The standard implementation offers this support for Windows (DLL), Linux, FreeBSD, Solaris,
and some other Unix implementations. It should not be difficult to extend this facility to other platforms;
check your distribution. (To check it, runpri nt (1 oadl i b()) from the Lua prompt and see the
result. If it complains about bad arguments, then you have dynamic linking facility. Otherwise, the error
message indicates that this facility is not supported or not installed.)

Lua provides al the functionality of dynamic linking in asingle function, called | oadl i b. Its hastwo
string arguments: the compl ete path of the library and the name of an initialization function. So, atypical
call to it looks like the next fragment:

| ocal path = "/usr/local/lual/lib/libluasocket.so"
| ocal f = loadlib(path, "luaopen _socket")

Thel oadl i b function loads the given library and links Luato it. However, it does not open the library
(that is, it does not call the initialization function); instead, it returns the initialization function asalLua
function, so that we can call it directly from Lua. If thereisany error loading the library or finding the
initialization function, | oadl i b returns nil plus an error message. We can improve our previous
fragment so that it checksfor errors and calls the initialization function:

| ocal path = "/usr/local/lua/lib/libluasocket.so"
-- or path = "C \\w ndows\\ | uasocket.dl "

| ocal f = assert(loadlib(path, "luaopen_socket"))
f() -- actually open the library

Typically, we could expect alibrary distribution to include a stub file similar to that previous code
fragment. Then, to install the library, we put the actual binary shared library anywhere, edit the stub to

Page 105 of 351

reflect the real path, and then add the stub filein adirectory in our LUA PATH. With this setting, we can
use theregular r equi r e function to open the C library.

Programming in Lua

Page 106 of 351

Programming in Lua

Part |. The Language Chapter 8. Compilation, Execution, and Errors

8.3 - Errors

Errare humanum est. Therefore, we must handle errors the best way we can. Because Luais an
extension language, frequently embedded in an application, it cannot simply crash or exit when an error
happens. Instead, whenever an error occurs, Lua ends the current chunk and returns to the application.

Any unexpected condition that L ua encounters raises an error. Errors occur when you (that is, your
program) try to add values that are not numbers, to call values that are not functions, to index values that
are not tables, and so on. (Y ou can modify this behavior using metatables, as we will see later.) Y ou can
also explicitly raise an error calling the er r or function; its argument is the error message. Usually, that
function is the appropriate way to handle errorsin your code:

print "enter a nunber:"
n = io.read("*nunber")
If not n then error("invalid input") end

Such combinationof i f not ... then error endissocommon that Luahasabuilt-in function
just for that job, called assert :

print "enter a nunber:"
n = assert(io.read("*nunber”), "invalid input")

Theassert function checks whether itsfirst argument is not false and simply returns that argument; if
the argument isfalse (that is, false or nil), assert raisesan error. Its second argument, the message, is
optional, so that if you do not want to say anything in the error message, you do not have to. Beware,
however, that asser t isaregular function. As such, Lua aways evaluates its arguments before calling
the function. Therefore, if you have something like

n =io0.read()
assert (tonunber(n),
“invalid input:

IS not a nunber")

Luawill aways do the concatenation, even when n isanumber. It may be wiser to use an explicit test in
such cases.

When afunction finds an unexpected situation (an exception), it can assume two basic behaviors: It can

Page 107 of 351

return an error code (typically nil) or it can raise an error, calling theer r or function. There are no
fixed rules for choosing between those two options, but we can provide a general guideline: An
exception that is easily avoided should raise an error; otherwise, it should return an error code.

For instance, let us consider the si n function. How should it behave when called on a table? Suppose it
returns an error code. If we need to check for errors, we would have to write something like

| ocal res = math. sin(x)
i f not res then -- error

However, we could as easily check this exception before calling the function:

I f not tonunber(x) then -- error: x is not a nunber

Usually, however, we check neither the argument nor the result of acall to si n; if the argument isnot a
number, it means probably something wrong in our program. In such situations, to stop the computation
and to issue an error message is the ssmplest and most practical way to handle the exception.

On the other hand, let us consider thei 0. open function, which opens afile. How should it behave
when called to read afile that does not exist? In this case, there is no simple way to check for the
exception before calling the function. In many systems, the only way of knowing whether afile existsis
totry to openit. Therefore, if i 0. open cannot open afile because of an external reason (such as
“file does not exist" or"perm ssion denied"),itreturnsnil, plus astring with the
error message. In thisway, you have a chance to handle the situation in an appropriate way, for instance
by asking the user for another file name:

| ocal file, nsg

r epeat
print "enter a file nane:"
| ocal name = io.read()
i f not nane then return end -- no i nput
file, nmsg = io0.open(nanme, "r")

if not file then print(nsg) end
until file

If you do not want to handle such situations, but still want to play safe, you ssimply useassert to
guard the operation:

file = assert(io.open(nanme, "r"))

Page 108 of 351

Thisisatypical Luaidiom: If i 0. open fails, assert will raise an error.

file = assert(io.open("no-file", "r"))
--> stdin:1l: no-file: No such file or directory

Notice how the error message, which is the second result fromi 0. open, goes as the second argument
toassert.

Programming in Lua

Page 109 of 351

Programming in Lua

Part |. The Language Chapter 8. Compilation, Execution, and Errors

8.4 - Error Handling and Exceptions

For many applications, you do not need to do any error handling in Lua. Usually, the application
program does this handling. All Lua activities start from a call by the application, usually asking Luato
run achunk. If thereisany error, this call returns an error code and the application can take appropriate
actions. In the case of the stand-alone interpreter, its main loop just prints the error message and
continues showing the prompt and running the commands.

If you need to handle errorsin Lua, you should usethe pcal | function (protected call) to encapsul ate
your code.

Suppose you want to run a piece of Lua code and to catch any error raised while running that code. Y our
first step isto encapsulate that piece of codein afunction; let uscall it f oo:

function foo ()
if-ﬂﬁexpected_condition then error() end
priﬁi(a[i]) -- potential error: "a'" may not be a table
end o
Then, you call f oo withpcal | :

I f pcall (foo) then
-- no errors while running "foo

el se
-- foo' raised an error: take appropriate actions
end
Of course, you can cal pcal | with an anonymous function:

I f pcall (function () ... end) then ...
el se ...

Page 110 of 351

Thepcal | function callsitsfirst argument in protected mode, so that it catches any errors while the
function is running. If there are no errors, pcal | returnstrue, plus any values returned by the call.
Otherwise, it returns false, plus the error message.

Despite its name, the error message does not have to be a string. Any Lua value that you passto er r or
will be returned by pcal | :

| ocal status, err = pcall (function () error({code=121}) end)
print(err.code) --> 121

These mechanisms provide all we need to do exception handling in Lua. We throw an exception with
er ror and catch it with pcal | . The error message identifies the kind or error.

Programming in Lua

Page 111 of 351

Programming in Lua

Part |. The Language Chapter 8. Compilation, Execution, and Errors

8.5 - Error Messages and Tracebacks

Although you can use avalue of any type as an error message, usually error messages are strings
describing what went wrong. When thereis an internal error (such as an attempt to index a non-table
value), Lua generates the error message; otherwise, the error message is the value passed to the er r or
function. In any case, Luatries to add some information about the location where the error happened:

| ocal status, err = pcall(function () a = "a' +1 end)
print(err)
--> stdin:1l: attenpt to performarithnetic on a string val ue

| ocal status, err = pcall(function () error("ny error") end)
print(err)
--> stdin:1: ny error

The location information gives the file name (st di n, in the example) plus the line number (1, in the
example).

Theer r or function has an additional second parameter, which givesthe level where it should report

the error; with it, you can blame someone else for the error. For instance, suppose you write a function
and itsfirst task isto check whether it was called correctly:

function foo (str)
I f type(str) ~= "string" then
error("string expected")
end

end
Then, someone calls your function with awrong argument:
foo({x=1})

Lua pointsits finger to your function---after all, it wasf oo that called er r or ---and not to the real
culprit, the caller. To correct that, you inform er r or that the error you are reporting occurred on level 2
in the calling hierarchy (level 1 isyour own function):

Page 112 of 351

function foo (str)
i f type(str) ~= "string" then
error("string expected", 2)
end

end

Frequently, when an error happens, we want more debug information than only the location where the
error occurred. At least, we want a traceback, showing the complete stack of callsleading to the error.
When pcal | returnsits error message, it destroys part of the stack (the part that went from it to the
error point). Consequently, if we want atraceback, we must build it before pcal | returns. To do that,
Luaprovidesthexpcal | function. Besides the function to be called, it receives a second argument, an
error handler function. In case of errors, Lua calls that error handler before the stack unwinds, so that it
can use the debug library to gather any extrainformation it wants about the error. Two common error
handlersare debug. debug, which gives you a Lua prompt so that you can inspect by yourself what
was going on when the error happened (later we will see more about that, when we discuss the debug
library); and debug. t r aceback, which builds an extended error message with a traceback. The latter
Is the function that the stand-alone interpreter uses to build its error messages. Y ou also can call debug.
t raceback at any moment to get atraceback of the current execution:

print (debug. traceback())

Programming in Lua

Page 113 of 351

Programming in Lua

Part |. The Language Chapter 9. Coroutines

9 - Coroutines

A coroutineis similar to athread (in the sense of multithreading): aline of execution, with its own stack,
itsown local variables, and its own instruction pointer; but sharing global variables and mostly anything
else with other coroutines. The main difference between threads and coroutines is that, conceptually (or
literally, in a multiprocessor machine), a program with threads runs several threads concurrently.
Coroutines, on the other hand, are collaborative: A program with coroutinesis, at any given time,
running only one of its coroutines and this running coroutine only suspends its execution when it
explicitly requests to be suspended.

Coroutineis a powerful concept. As such, several of its main uses are complex. Do not worry if you do
not understand some of the examples in this chapter on your first reading. Y ou can read the rest of the
book and come back here later. But please come back. It will be time well spent.

Programming in Lua

Page 114 of 351

Programming in Lua

Part |. The Language Chapter 9. Coroutines

9.1 - Coroutine Basics

Lua offersall its coroutine functions packed in the cor out i ne table. The cr eat e function creates
new coroutines. It has a single argument, a function with the code that the coroutine will run. It returnsa
value of typet hr ead, which represents the new coroutine. Quite often, the argument tocr eat e isan
anonymous function, like here:

co = coroutine.create(function ()

print("hi")
end)
print(co) --> thread: 0x8071d98

A coroutine can be in one of three different states. suspended, running, and dead. When we create a
coroutine, it starts in the suspended state. That means that a coroutine does not run its body
automatically when we create it. We can check the state of a coroutine with the st at us function:

print(coroutine.status(co)) --> suspended

Thefunction cor out i ne. r esune (re)starts the execution of a coroutine, changing its state from
suspended to running:

corouti ne.resune(co) --> hi

In this example, the coroutine body simply prints™ hi " and terminates, leaving the coroutine in the dead
state, from which it cannot return:

print(coroutine.status(co)) --> dead

Until now, coroutines ook like nothing more than a complicated way to call functions. The real power
of coroutines stems from theyi el d function, which alows a running coroutine to suspend its execution
so that it can be resumed later. Let us see asimple example:

co = coroutine.create(function ()
for i=1,10 do
print("co", i)

Page 115 of 351

coroutine.yield()
end
end)

Now, when we resume this coroutine, it startsits execution and runs until thefirst yi el d:
corouti ne. resune(co) --> Cco 1

If we check its status, we can see that the coroutine is suspended and therefore can be resumed again:
print(coroutine.status(co)) --> suspended

From the coroutine's point of view, al activity that happens while it is suspended is happening inside its
call toyi el d. When we resume the coroutine, thiscall toyi el d finally returns and the coroutine
continues its execution until the next yield or until its end:

corouti ne. resune(co) --> Cco 2
corouti ne. resune(co) --> Cco 3
corouti ne.resune(co) --> Cco 10
corouti ne.resune(co) -- prints nothing

During the last call to r esune, the coroutine body finished the loop and then returned, so the coroutine
is dead now. If wetry to resumeit again, r esune returns false plus an error message:

print(coroutine.resune(co))
--> fal se cannot resune dead corouti ne

Note that r esune runsin protected mode. Therefore, if there isany error inside a coroutine, Lua will
not show the error message, but instead will return it to ther esune call.

A useful facility in Luaisthat a pair resume-yield can exchange data between them. Thefirstr esune,
which has no corresponding yi el d waiting for it, passes its extra arguments as arguments to the
coroutine main function:

co = coroutine.create(function (a,b,c)
print("co", a,b,c)
end)
coroutine.resune(co, 1, 2, 3) -->co 1 2 3

A call tor esune returns, after the true that signals no errors, any arguments passed to the
corresponding yi el d:

Page 116 of 351

co = coroutine.create(function (a,b)
coroutine.yield(a + b, a - b)
end)
print(coroutine.resune(co, 20, 10)) -->true 30 10

Symmetrically, yi el d returns any extra arguments passed to the corresponding r esune:

co = coroutine.create (function ()
print("co", coroutine.yield())
end)
corouti ne. resune(co)
coroutine.resune(co, 4, 5) -->co 4 5

Finally, when a coroutine ends, any values returned by its main function go to the corresponding
resune:

co = coroutine.create(function ()
return 6, 7
end)
print(coroutine.resunme(co)) -->true 6 7

We seldom use all these facilities in the same coroutine, but all of them have their uses.

For those that already know something about coroutines, it isimportant to clarify some concepts before
we go on. Lua offerswhat | call asymmetric coroutines. That means that it has a function to suspend the
execution of a coroutine and a different function to resume a suspended coroutine. Some other languages
offer symmetric coroutines, where there is only one function to transfer control from any coroutine to
another.

Some people call asymmetric coroutine semi-coroutines (because they are not symmetrical, they are not
really co). However, other people use the same term semi-coroutine to denote a restricted
implementation of coroutines, where a coroutine can only suspend its execution when it is not inside any
auxiliary function, that is, when it has no pending callsin its control stack. In other words, only the main
body of such semi-coroutines can yield. A generator in Python is an example of this meaning of semi-
coroutines.

Unlike the difference between symmetric and asymmetric coroutines, the difference between coroutines
and generators (as presented in Python) is a deep one; generators are ssmply not powerful enough to
Implement several interesting constructions that we can write with true coroutines. Lua offerstrue,
asymmetric coroutines. Those that prefer symmetric coroutines can implement them on top of the
asymmetric facilities of Lua. It isan easy task. (Basically, each transfer does ayield followed by a

Page 117 of 351

resume.)

Programming in Lua

Page 118 of 351

Programming in Lua *
Part |. The Language Chapter 9. Coroutines

9.2 - Pipes and Filters

One of the most paradigmatic examples of coroutinesisin the producer-consumer problem. Let us
suppose that we have afunction that continually produces values (e.g., reading them from afile) and
another function that continually consumes these values (e.g., writing them to another file). Typicaly,
these two functions look like this:

function producer ()
while true do
| ocal x = io0.read() -- produce new val ue
send(x) -- send to consuner
end
end

function consuner ()
while true do
| ocal x = receive() -- receive from producer
lo.wite(x, "\n") -- consune new val ue
end
end

(In that implementation, both the producer and the consumer run forever. It is an easy task to change
them to stop when there is no more data to be handled.) The problem here is how to match send with
recei ve. Itisatypical case of awho-has-the-main-loop problem. Both the producer and the consumer
are active, both have their own main loops, and both assume that the other is a callable service. For this
particular example, it is easy to change the structure of one of the functions, unrolling itsloop and
making it a passive agent. However, this change of structure may be far from easy in other real
scenarios.

Coroutines provide an ideal tool to match producers and consumers, because aresume-yield pair turns
upside-down the typical relationship between caller and callee. When a coroutine callsyi el d, it does
not enter into a new function; instead, it returns a pending call (tor esune). Similarly, acall to

r esumnme does not start a new function, but returnsacall toyi el d. This property is exactly what we
need to match asend with ar ecei ve in such away that each one acts asif it were the master and the
other the slave. So, r ecei ve resumes the producer so that it can produce a new value; and send yields
the new value back to the consumer:

Page 119 of 351

Page 120 of 351

Page 121 of 351

Programming in Lua

Part |. The Language Chapter 9. Coroutines

9.3 - Coroutines as lterators

We can see loop iterators as a quite specific example of the producer-consumer pattern. An iterator
produces items to be consumed by the loop body. Therefore, it seems appropriate to use coroutines to
write iterators. Actually, coroutines provide a powerful tool for thistask. Again, the key feature istheir
ability to turn upside-down the relationship between caller and callee. With this feature, we can write
iterators without worrying about how to keep state between successive calls to the iterator.

To illustrate this kind of use, let uswrite an iterator to traverse all permutations of a given array. It is not
an easy task to write directly such iterator, but it is not so difficult to write arecursive function that
generates al those permutations. The ideais simple: Put each array element in the last position, in turn,
and recursively generate all permutations of the remaining elements. The code is as follows:

function perngen (a, n)
if n == 0 then
print Resul t (a)
el se
for i=1,n do

-- put i-th elenent as the | ast one
a[n], a[i] = a[i], a[n]

-- generate all pernutations of the other elenents
pernmgen(a, n - 1)

-- restore i1 -th el enent
afn], a[i] =a[i], a[n]

end

end
end

To see it working, we should define an appropriate pr i nt Resul t function and call per ngen with
proper arguments:

function printResult (a)
for i,v in ipairs(a) do

Page 122 of 351

lo.write(v, " ")
end
lo.write("\'n")
end

perngen ({1, 2, 3, 4}, 4)

After we have the generator ready, it is an automatic task to convert it to an iterator. First, we change
print Resul t toyi el d:

function perngen (a, n)
if n == 0 then
coroutine.yield(a)
el se

Then, we define a factory that arranges for the generator to run inside a coroutine, and then create the
iterator function. The iterator simply resumes the coroutine to produce the next permutation:

function perm (a)
| ocal n = table.getn(a)
| ocal co = coroutine.create(function () perngen(a, n) end)
return function () -- iterator
| ocal code, res = coroutine.resune(co)
return res
end
end

With that machinery in place, it istrivia to iterate over all permutations of an array with afor statement:
for pin perm{"a", "b", "c"} do

print Resul t (p)
end

OO 0 9 T O
O O T2 9

1
1
Vv
QT LV OO T

The per mfunction uses acommon pattern in Lua, which packs a call to resume with its corresponding
coroutine inside a function. This pattern is so common that Lua provides a special function for it:

Page 123 of 351

corouti ne. w ap. Likecr eat e, w ap creates anew coroutine. Unlikecr eat e, w ap does not
return the coroutine itself; instead, it returns afunction that, when called, resumes the coroutine. Unlike
the original r esune, that function does not return an error code asits first result; instead, it raises the
error in case of errors. Using wr ap, we can write per mas follows:

function perm (a)
| ocal n = table.getn(a)

return coroutine.wap(function () perngen(a, n) end)
end

Usually, cor out i ne. wr ap issimpler to usethan cor out i ne. cr eat e. It gives us exactly what we
need from a coroutine: afunction to resumeit. However, it is also less flexible. Thereis no way to check
the status of a coroutine created with wr ap. Moreover, we cannot check for errors.

Programming in Lua

Page 124 of 351

Programming in Lua

Part |. The Language Chapter 9. Coroutines

9.4 - Non-Preemptive Multithreading

Aswe saw earlier, coroutines are akind of collaborative multithreading. Each coroutine is equivalent to
athread. A pair yield-resume switches control from one thread to another. However, unlike "real"
multithreading, coroutines are non preemptive. While a coroutine is running, it cannot be stopped from
the outside. It only suspends execution when it explicitly requests so (through acall toyi el d). For
several applications thisis not a problem, quite the opposite. Programming is much easier in the absence
of preemption. Y ou do not need to be paranoid about synchronization bugs, because all synchronization
among threads is explicit in the program. Y ou only have to ensure that a coroutine only yieldswhen it is
outside a critical region.

However, with non-preemptive multithreading, whenever any thread calls a blocking operation, the
whole program blocks until the operation completes. For most applications, thisis an unacceptable
behavior, which leads many programmers to disregard coroutines as areal alternative to conventional
multithreading. As we will see here, that problem has an interesting (and obvious, with hindsight)
solution.

L et us assume a typical multithreading situation: We want to download several remote files through
HTTP. Of course, to download several remote files, we must know how to download one remotefile. In
this example, we will use the LuaSocket library, developed by Diego Nehab. To download afile, we
must open a connection to its site, send arequest to the file, receive the file (in blocks), and close the
connection. In Lua, we can write this task as follows. First, we load the LuaSocket library:

require "l uasocket™

Then, we define the host and the file we want to download. In this example, we will download the
HTML 3.2 Reference Specification from the World Wide Web Consortium site:

host
file

"www. W3. or g"
"/ TR REC-htm 32. htm "

Then, we open a TCP connection to port 80 (the standard port for HT TP connections) of that site:
c = assert(socket.connect(host, 80))

The operation returns a connection object, which we use to send the file request:

Page 125 of 351

c:send("CGET " .. file .. "™ HITP/1.0\r\n\r\n")

Ther ecei ve method always returns a string with what it read plus another string with the status of the
operation. When the host closes the connection we break the receive loop.

Finally, we close the connection:
c:close()

Now that we know how to download onefile, let us return to the problem of downloading several files.
Thetrivial approach isto download one at atime. However, this sequential approach, where we only
start reading afile after finishing the previous one, istoo slow. When reading a remote file, a program
spends most of itstime waiting for datato arrive. More specifically, it spends most of itstime blocked in
thecall tor ecei ve. So, the program could run much faster if it downloaded all files ssmultaneously.
Then, while a connection has no data available, the program can read from another connection. Clearly,
coroutines offer a convenient way to structure those simultaneous downloads. We create a new thread
for each download task. When athread has no data available, it yields control to a simple dispatcher,
which invokes another thread.

To rewrite the program with coroutines, let us first rewrite the previous download code as a function:

functi on downl oad (host, file)
| ocal ¢ = assert(socket.connect(host, 80))
| ocal count =0 -- counts nunber of bytes read
c.send("CGET " .. file .. "™ HITP/1.0\r\n\r\n")
while true do
| ocal s, status = receive(c)
count = count + string.len(s)

I f status == "cl osed" then break end
end
c:close()
print(file, count)

end

Because we are not interested in the remote file contents, this function only counts the file size, instead
of writing the file to the standard output. (With several threads reading several files, the output would
intermix all files.) In this new code, we use an auxiliary function (r ecei ve) to receive datafrom the
connection. In the sequential approach, its code would be like this:

function receive (connection)
return connection:receive(2"10)
end

Page 126 of 351

For the concurrent implementation, this function must receive data without blocking. Instead, if thereis
not enough data available, it yields. The new codeis like this:

function receive (connection)
connection: ti nmeout (0) -- do not bl ock
| ocal s, status = connection:receive(2"10)
I f status == "tineout" then
coroutine.yiel d(connection)
end
return s, status
end

Thecal toti meout (0) makes any operation over the connection a non-blocking operation. When the
operation statusis" t i meout ", it means that the operation returned without completion. In this case,
the thread yields. The non-false argument passed to yi el d signalsto the dispatcher that the thread is
still performing its task. (Later we will see another version where the dispatcher needs the timed-out
connection.) Notice that, even in case of atimeout, the connection returns what it read until the timeout,
sorecei ve awaysreturnss toitscaller.

The next function ensures that each download runsin an individual thread:

threads = {} -- list of all live threads
function get (host, file)

-- Ccreate coroutine

| ocal co = coroutine.create(function ()

downl oad(host, file)

end)

-- insert it in the |ist

tabl e.insert(threads, co)
end

Thetablet hr eads keepsalist of al live threads, for the dispatcher.

The dispatcher issimple. It ismainly aloop that goes through al threads, calling one by one. It must
also remove from the list the threads that finish their tasks. It stops the loop when there are no more
threads to run:

function dispatcher ()
while true do
| ocal n = table.getn(threads)
If n == 0 then break end -- no nore threads to run

Page 127 of 351

for i=1,n do
| ocal status, res = coroutine.resune(threads[i])

I f not res then -- thread finished its task?
t abl e. renove(t hreads, i)
br eak
end
end
end
end

Finally, the main program creates the threads it needs and calls the dispatcher. For instance, to download
four documents from the W3C site, the main program could be like this:

host = "www. wW3. org"

get (host, "/ TR/ htm 401/ htm 40.txt")
get (host, "/ TR/ 2002/ REC- xht m 1- 20020801/ xht ml 1. pdf ")
get (host,"/ TR/ REC-htm 32. htm ")
get (host,
"/ TR/ 2000/ REC- DOVt Level - 2- Core- 20001113/ DOWR- Core. t xt")

di spat cher () -- main | oop

My machine takes six seconds to download those four files using coroutines. With the sequential
implementation, it takes more than twice that time (15 seconds).

Despite the speedup, this last implementation is far from optimal. Everything goes fine while at least one
thread has something to read. However, when no thread has data to read, the dispatcher does a busy

wait, going from thread to thread only to check that they still have no data. As aresult, this coroutine
implementation uses almost 30 times more CPU than the sequential solution.

To avoid this behavior, we can usethe sel ect function from LuaSocket. It allows a program to block
while waiting for a status change in a group of sockets. The changes in our implementation are small.
We only have to change the dispatcher. The new versionislike this:

function dispatcher ()
while true do
| ocal n = tabl e. getn(threads)
if n == 0 then break end -- no nore threads to run
| ocal connections = {}
for i=1,n do
| ocal status, res = coroutine.resune(threads[i])

Page 128 of 351

I f not res then -- thread finished its task?

t abl e. renove(t hreads, i)
br eak
el se -- timeout
tabl e. i nsert (connections, res)
end
end
i f table.getn(connections) == n then
socket . sel ect (connecti ons)
end

end

Along the inner loop, this new dispatcher collects the timed-out connectionsin table connect i ons.
Remember that r ecei ve passes such connectionsto yi el d; thusr esune returns them. When all
connections time out, the dispatcher callssel ect to wait for any of those connections to change status.
Thisfinal implementation runs as fast as the first implementation with coroutines. Moreover, as it does
no busy waits, it usesjust alittle more CPU than the sequential implementation.

Programming in Lua

Page 129 of 351

Programming in Lua

Part |. The Language Chapter 10. Complete Examples

10 - Complete Examples

To end thisintroduction about the language, we show two complete programs that illustrate different
facilitiesof Lua. The first exampleisareal program from the Lua site; it illustrates the use of Luaasa
data description language. The second example is an implementation of the Markov chain algorithm,
described by Kernighan & Pikein their book The Practice of Programming (Addison-Wesley, 1999).

Programming in Lua

Page 130 of 351

Programming in Lua

Part |. The Language Chapter 10. Complete Examples

10.1 - Data Description

The Lua site keeps a database containing a sample of projects around the world that use Lua. We
represent each entry in the database by a constructor in an auto-documented way, as the following
example shows:

ent ry{

title = "Tecgraf",

org = "Conputer G aphics Technol ogy G oup, PUC R 0",

url = "http://ww.tecgraf.puc-rio.br/",

contact = "Wl demar Cel es",

description = [[
TeCG af is the result of a partnership between PUC R o,
the Pontifical Catholic University of Rio de Janeiro,
and PETROBRAS</ A>,
the Brazilian G| Conpany.
TeCG af is Lua's birthpl ace,
and the | anguage has been used there since 1993.
Currently, nore than thirty programers in TeCG af use
Lua regularly; they have witten nore than two hundred
t housand |ines of code, distributed anong dozens of
final products.]]

}

The interesting thing about this representation is that a file with a sequence of such entriesisalLua
program, which does a sequence of callsto afunction ent r y, using the tables as the call arguments.

Our goal isto write a program that shows that datain HTML, so that it becomes the web page ht t p: //
www. | ua. or g/ uses. ht ml . Because there are many projects, the final page first showsalist of all
project titles, and then shows the details of each project. The result of the program is something like this:

<HTM_>

<HEAD><TI TLE>Pr 0j ect s usi ng Lua</ Tl TLE></ HEAD>

<BODY BGCOLOR="#FFFFFF" >

Here are brief descriptions of sonme projects around the
worl d that use Lua</ A>.

Page 131 of 351

<Ll >TeCG af </ A>
 ...

</ UL>

<H3>
TeCG af </ A>

<SMALL>Conput er G aphi cs Technol ogy G oup,
PUC- Ri o</ EM></ SMALL>
</ H3>

TeCG af is the result of a partnership between

di stri buted anong dozens of final products.<P>
Contact: \Wal demar Cel es

</ A><HR>

</ BODY></ HTM_>

To read the data, al the program hasto do is to give a proper definition for ent r y, and then run the
datafile asaprogram (with dof i | e). Note that we have to traverse all the entries twice, first for the
title list, and again for the project descriptions. A first approach would beto collect al entriesin an
array. However, because Lua compiles so fast, there is a second attractive solution: run the datafile
twice, each time with a different definition for ent r y. We follow this approach in the next program.

First, we define an auxiliary function for writing formatted text (we already saw this function in Section
5.2):

function fwite (fnt, ...)
return io.wite(string.format(fm, unpack(arg)))
end

The BEG N function simply writes the page header, which is always the same:

function BEG N()
lo.wite([]
<HTM_>
<HEAD><TI TLE>Pr oj ect s usi ng Lua</ Tl TLE></ HEAD>
<BODY BGCOLOR="#FFFFFF" >

Page 132 of 351

Here are brief descriptions of sone projects around the
worl d that use Lua</ A>.

11)

end

Thefirst definition for ent r y writes each title project as alist item. The argument o will be the table
describing the project:

function entry0O (0)
N=N + 1
| ocal title = o.title or "(no title)'
fwite('<LlI>%\n', N, title)
end

If o.titl eisnil (thatis, the field was not provided), the function uses afixed string " (no
title)".

The second definition writes all useful data about a project. It is alittle more complex, because al items
are optional.

function entryl (o)
N=N + 1
| ocal title = o.title or o.org or
fwite(' <HR>\ n<H3>\n')
| ocal href ="'

org

I f o.url then
href = string.format(' HREF="9%"', o.url)
end
fwite(' %\n', N, href, title)

If o.title and o.org then

fwrite('
\ n<SMALL><EM-Us</ EM></ SMALL>' , 0. orQ)
end
fwite('\n</H3>\n")

I f o.description then
fwite('9%', string.gsub(o.description,
‘\n\n\n*', '<P>\n"))
fwite('<P>\n")
end

Page 133 of 351

if o.email then
fwite('Contact: %\n',
o.email, o.contact or o.ennil)
el seif o.contact then
fwite('Contact: %\n', o.contact)
end
end

(To avoid conflict with HTML, which uses double quotes, we used only single quotes in this program.)
The last function closes the page:

function END()
fwite('</BODY></HTM.>\n")
end

Finally, the main program starts the page, runs the data file with the first definition for ent ry
(ent ry0) to create the list of titles, then runs the data file again with the second definition for ent r y,
and closes the page:

BEG N()

N=20

entry = entry0
fwite('\n")
dofile(' db.lua")
fwite('\n")

N=20

entry = entryl
dofile(' db.lua")

END()

Programming in Lua

Page 134 of 351

Programming in Lua

Part |. The Language Chapter 10. Complete Examples

10.2 - Markov Chain Algorithm

Our second example is an implementation of the Markov chain algorithm. The program generates
random text, based on what words may follow a sequence of n previous words in a base text. For this
implementation, we will use n=2.

Thefirst part of the program reads the base text and builds a table that, for each prefix of two words,
gives alist with the words that follow that prefix in the text. After building the table, the program uses
the table to generate random text, wherein each word follows two previous words with the same
probability of the base text. As aresult, we have text that is very, but not quite, random. For instance,
when applied over this book, the output of the program has pieces like " Constructors can also traverse a
table constructor, then the parentheses in the following line does the whole filein a field n to store the
contents of each function, but to show its only argument. If you want to find the maximum element in an
array can return both the maximum value and continues showing the prompt and running the code. The
following words are reserved and cannot be used to convert between degrees and radians.”

We will code each prefix by its two words concatenated with spaces in between:
function prefix (wl, w2)
return wl .. ' ' .. W2

end

We use the string NOAORD (" \ n") to initialize the prefix words and to mark the end of the text. For
instance, for the following text

the nore we try the nore we do
the table of following words would be

{ ["\n\n"] = {"the"},
["\n the"] = {"nore"},

["the nore"] = {"we", "we"},
["nore we"] = {"try", "do"},
["we try"] = {"the"},

["try the"] = {"nore"},
["we do"] = {"\n"},

Page 135 of 351

}

The program keeps itstable in the global variable st at et ab. To insert anew word in a prefix list of
this table, we use the following function:

function insert (index, val ue)
I f not statetab[index] then
st at et ab[i ndex] = {val ue}
el se
tabl e.i nsert(statetab[index], value)
end
end

It first checks whether that prefix already has alist; if not, it creates a new one with the new value.
Otherwise, it uses the predefined functiont abl e. i nsert toinsert the new value at the end of the
existing list.

To buildthe st at et ab table, we keep two variables, wl and w2, with the last two words read. For
each prefix, we keep alist of all words that follow it.

After building the table, the program starts to generate a text with MAXGEN words. First, it re-initializes
variableswl and w2. Then, for each prefix, it chooses randomly a next word from the list of valid next
words, prints that word, and updates wl and w2. Next we show the complete program.

-- Markov Chain Programin Lua

function allwords ()

| ocal line = io.read() -- current line
| ocal pos =1 -- current position in the line
return function () -- iterator function
while line do -- repeat while there are lines
| ocal s, e = string.find(line, "%w", pos)
If s then -- found a word?
pos = e + 1 -- update next position
return string.sub(line, s, e) -- return the word
el se
line = 1io0.read() -- word not found; try next |ine
pos =1 -- restart fromfirst position
end
end
return nil -- no nore lines: end of traversal
end

Page 136 of 351

end

function prefix (wl, w2)
return wl .. " " .. W2
end

| ocal statetab

function insert (index, value)
I f not statetab[index] then
stat et ab[i ndex] = {n=0}
end
tabl e.insert(statetab[index], value)
end

local N = 2

| ocal MAXGEN = 10000
| ocal NOAMORD = "\ n"
-- build table

statetab = {}
| ocal wi, w2 = NOAORD, NOWORD
for win allwrds() do
i nsert(prefix(wl, w2), w
WL = W2; W2 = w,
end
i nsert(prefix(wl, w2), NOMRD)

-- generate text
wl = NOAORD;, w2 = NOWORD -- reinitialize
for 1 =1, MAXGEN do
| ocal list = statetab[prefix(wl, w2)]
-- choose a randomitemfromli st
| ocal r = math.randon(table.getn(list))
| ocal nextword = list[r]
I f nextword == NOAMORD t hen return end
lo.wite(nextword, " ")
wl = w2; w2 = nextword
end

Programming in Lua

Page 137 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 11. Data Structures

11 - Data Structures

Tablesin Lua are not a data structure; they are the data structure. All structures that other languages
offer---arrays, records, lists, queues, sets---are represented with tables in Lua. More to the point, tables
implement all these structures efficiently.

In traditional languages, such as C and Pascal, we implement most data structures with arrays and lists
(where lists = records + pointers). Although we can implement arrays and lists using Luatables (and
sometimes we do that), tables are more powerful than arrays and lists; many algorithms are simplified to
the point of triviality with the use of tables. For instance, you seldom write a search in Lua, because
tables offer direct access to any type.

It takes awhile to learn how to use tables efficiently. Here, we will show how you can implement typical
data structures with tables and will provide some examples of their use. We will start with arrays and
lists, not because we need them for the other structures, but because most programmers are aready
familiar with them. We have aready seen the basics of this material in our chapters about the language,
but | will repeat it here for compl eteness.

Programming in Lua

Page 138 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 11. Data Structures

11.1 - Arrays

We implement arrays in Luasimply by indexing tables with integers. Therefore, arrays do not have a
fixed size, but grow as we need. Usually, when we initialize the array we define its size indirectly. For
instance, after the following code

a = {} -- new array
for i=1, 1000 do

a[i] =0
end

any attempt to access afield outside the range 1-1000 will return nil, instead of zero.
Y ou can start an array at index 0, 1, or any other value:

-- creates an array with indices from-51to 5

a = {}

for 1=-5, 5 do
a[i] =0

end

However, it is customary in Luato start arrays with index 1. The Lualibraries adhere to this convention;
S0, if your arrays also start with 1, you will be able to use their functions directly.

We can use constructors to create and initialize arrays in a single expression:
squares = {1, 4, 9, 16, 25, 36, 49, 64, 81}

Such constructors can be as large as you need (well, up to afew million el ements).

Programming in Lua

Page 139 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 11. Data Structures

11.2 - Matrices and Multi-Dimensional Arrays

There are two main ways to represent matricesin Lua. Thefirst oneisto use an array of arrays, that is, a
table wherein each element is another table. For instance, you can create a matrix of zeros with
dimensions N by Mwith the following code:

n = {} -- create the matrix
for i=1,N do
mili] = {} -- Create a new row
for j=1,Mdo
n[i][j] =0
end
end

Because tables are objectsin Lua, you have to create each row explicitly to create a matrix. On the one
hand, thisis certainly more verbose than ssimply declaring a matrix, asyou do in C or Pascal. On the
other hand, that gives you more flexibility. For instance, you can create a triangular matrix changing the
line

for j=1,Mdo
In the previous exampleto
for j=1,i do
With that code, the triangular matrix uses only half the memory of the original one.

The second way to represent a matrix in Luais by composing the two indicesinto asingle one. If the
two indices are integers, you can multiply the first one by a constant and then add the second index.
With this approach, the following code would create our matrix of zeros with dimensions N by M

n = {} -- create the matrix
for i=1,N do
for j=1,Mdo
ml[i*M+ j] =0
end

Page 140 of 351

end

If the indices are strings, you can create a single index concatenating both indices with a character in
between to separate them. For instance, you can index a matrix mwith string indicess and t with the
codenfs..':'..t],providedthat boths andt do not contain colons (otherwise, pairslike (" a: "
"b")and ("a",": b") would collapse into asingleindex " a: : b"). When in doubt, you can use a
control character like "\ 0" to separate the indices.

Quite often, applications use a sparse matrix, a matrix wherein most elements are O or nil. For instance,
you can represent a graph by its adjacency matrix, which has the value x in position m n only when the
nodes mand n are connected with cost x; when those nodes are not connected, the value in position m n
isnil. To represent a graph with ten thousand nodes, where each node has about five neighbors, you will
need a matrix with a hundred million entries (a square matrix with 10,000 columns and 10,000 rows),
but approximately only fifty thousand of them will not be nil (five non-nil columns for each row,
corresponding to the five neighbors of each node). Many books on data structures discuss at length how
to implement such sparse matrices without wasting 400 MB of memory, but you do not need those
techniques when programming in Lua. Because arrays are represented by tables, they are naturally
sparse. With our first representation (tables of tables), you will need ten thousand tables, each one with
about five elements, with agrand total of fifty thousand entries. With the second representation, you will
have a single table, with fifty thousand entries in it. Whatever the representation, you only need space
for the non-nil elements.

Programming in Lua

Page 141 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 11. Data Structures

11.3 - Linked Lists

Because tables are dynamic entities, it is easy to implement linked listsin Lua. Each node is represented
by atable and links are ssmply table fields that contain references to other tables. For instance, to
implement a basic list, where each node has two fields, next andval ue, we need avariable to be the
list root:

list = nil
To insert an element at the beginning of thelist, with avalue v, we do
list = {next = 1list, value = v}

To traverse the list, we write:

local | = 1list

while | do
print(l.value)
| = 1. next

end

Other kinds of lists, such as double-linked lists or circular lists, are also implemented easily. However,
you seldom need those structures in Lua, because usually there is asimpler way to represent your data
without using lists. For instance, we can represent a stack with an (unbounded) array, with afield n
pointing to the top.

Programming in Lua

Page 142 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 11. Data Structures

11.4 - Queues and Double Queues

Although we can implement queuestrivialy usingi nsert andr enove (fromthet abl e library),
this implementation can be too slow for large structures. A more efficient implementation uses two
indices, one for the first and another for the last element:

function ListNew ()
return {first = 0, last = -1}
end

To avoid polluting the global space, we will define all list operationsinside atable, properly called
Li st . Therefore, we rewrite our last example like this:

List = {}
function List.new ()

return {first =0, last = -1}
end

Now, we can insert or remove an element at both ends in constant time:

function List.pushleft (list, value)
| ocal first = list.first - 1
list.first = first
list[first] = val ue

end

function List.pushright (list, value)
| ocal last = list.last + 1
list.last = | ast
list[last] = val ue

end

function List.popleft (list)

| ocal first = list.first

if first >list.last then error("list is enpty") end

| ocal value = list[first]

list[first] = nil -- to all ow garbage collection

Page 143 of 351

list.first = first + 1
return val ue
end

function List.popright (list)

| ocal last = list.|ast
if list.first > last then error("list is enpty") end
| ocal value = list[last]
list[last] = nil -- to all ow garbage collection
list.last = last - 1
return val ue
end

If you use this structure in a strict queue discipline, calling only pushri ght and popl ef t , both
first andl ast will increase continually. However, because we represent arrays in Lua with tables,
you can index them either from 1 to 20 or from 16,777,216 to 16,777,236. Moreover, because L ua uses
double precision to represent numbers, your program can run for two hundred years, doing one million
insertions per second, before it has problems with overflows.

Programming in Lua

Page 144 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 11. Data Structures

11.5 - Sets and Bags

Suppose you want to list al identifiers used in a program source; somehow you need to filter the
reserved words out of your listing. Some C programmers could be tempted to represent the set of
reserved words as an array of strings, and then to search this array to know whether agiven word isin
the set. To speed up the search, they could even use a binary tree or a hash table to represent the set.

In Lua, an efficient and simple way to represent such setsisto put the set elements asindicesin atable.
Then, instead of searching the table for agiven element, you just index the table and test whether the
result is nil or not. In our example, we could write the next code:

reserved = {
["while"] = true, ["end"]

= true,
["function"] = true, ["local"] =

true,

}

for win allwords() do
I f reserved[w] then
-- "W is a reserved wrd

(Because whileis areserved word in Lua, we cannot use it as an identifier. Therefore, we cannot write
whil e = 1;instead, weusethe["whi | e"] = 1 notation.)

Y ou can have aclearer initialization using an auxiliary function to build the set:

function Set (list)
| ocal set = {}

for , I inipairs(list) do set[l] = true end
return set

end

reserved = Set{"while", "end", "function", "local", }

Programming in Lua

Page 145 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 11. Data Structures

11.6 - String Buffers

Suppose you are building a string piecemeal, for instance reading afile line by line. Y our typical code
would look like this:

-- WARNI NG bad code ahead!!

| ocal buff =""

for line inio.lines() do
buff = buff .. line .. "\'n"
end

Despite itsinnocent look, that code in Lua can cause a huge performance penalty for large files: For
Instance, it takes almost a minute to read a 350 KB file. (That iswhy Lua providesthei o. r ead
("*al ") option, which reads the whole filein 0.02 seconds.)

Why isthat? Lua uses a true garbage-collection algorithm; when it detects that the program is using too
much memory, it goes through all its data structures and frees those structures that are not in use
anymore (the garbage). Usually this algorithm has a good performance (it is not by chance that Luais so
fast), but the above loop takes the worst of the algorithm.

To understand what happens, let us assume that we are in the middle of the read loop; buf f isaready a
string with 50 KB and each line has 20 bytes. When Lua concatenatesbuf f. . | i ne. . "\ n", it creates
anew string with 50,020 bytes and copies 50 KB from buf f into this new string. That is, for each new
line, Lua moves 50 KB of memory, and growing. After reading 100 new lines (only 2 KB), Lua has
already moved more than 5 MB of memory. To make things worse, after the assignment

buff = buff .. line .. "\n"

the old string is now garbage. After two loop cycles, there are two old strings making atotal of more
than 100 KB of garbage. So, Lua decides, quite correctly, that it is agood time to run its garbage
collector and so it frees those 100 KB. The problem is that this will happen every two cycles and so Lua
will run its garbage collector two thousand times before reading the whole file. Even with all this work,
its memory usage will be approximately three timesthefile size.

This problem is not peculiar to Lua: Other languages with true garbage collection, and where strings are
immutable objects, present asimilar behavior, Java being the most famous example. (Java offers the

Page 146 of 351

structure St r i ngBuf f er to ameliorate the problem.)

Before we continue, we should remark that, despite all | said, that situation is not acommon problem.
For small strings, the above loop is OK. To read awholefile, weusethe" *al | " option, which reads it
at once. However, sometimes there are no simple solutions. Then, the only solution is a more efficient
algorithm. Here we show one.

Our original loop took alinear approach to the problem, concatenating small strings one by one into the
accumulator. This new algorithm avoids this, using a binary approach instead. It concatenates several
small strings among them and, occasionally, it concatenates the resulting large strings into larger ones.
The heart of the algorithm is a stack that keeps the large strings already created in its bottom, while
small strings enter through the top. The main invariant of this stack is similar to that of the popular
(among programmers, at least) Tower of Hanoi: A string in the stack can never sit over a shorter string.
Whenever anew string is pushed over a shorter one, then (and only then) the algorithm concatenates
both. This concatenation creates alarger string, which now may be larger than its neighbor in the
previous floor. If that happens, they are joined too. Those concatenations go down the stack until the
loop reaches alarger string or the stack bottom.

function newStack ()
return {""} -- starts with an enpty string
end

function addString (stack, s)
tabl e.insert(stack, s) -- push '"s' into the the stack
for i=table.getn(stack)-1, 1, -1 do
I f string.len(stack[i]) > string.len(stack[i+1]) then
br eak
end
stack[i] = stack[i] .. table.renove(stack)
end
end

To get the final contents of the buffer, we just need to concatenate all strings down to the bottom. The
t abl e. concat function does exactly that: It concatenates all strings of alist.

Using this new data structure, we can rewrite our program as follows:

| ocal s = newSt ack()

for line inio.lines() do
addString(s, line .. "\'n")

end

s = toString(s)

Page 147 of 351

This new program reduces our original time to read a 350 KB file from 40 secondsto 0.5 seconds. The
calio.read("*al|l") isstill faster, finishing the job in 0.02 seconds.

Actualy, whenwecali o.read("*all"),i o. r ead usesexactly the data structure that we
presented here, but implemented in C. Several other functionsin the Lualibraries also use thisC
implementation. One of these functionsist abl e. concat . With concat , we can simply collect all
strings in atable and then concatenate all of them at once. Because concat uses the C implementation,
it is efficient even for huge strings.

Theconcat function accepts an optional second argument, which is a separator to be inserted between
the strings. Using this separator, we do not need to insert a newline after each line:

| ocal t = {}

for line inio.lines() do
table.insert(t, line)

end

s = table.concat(t, "\n") .. "\n"

(Thei o. | i nes iterator returns each line without the newline.) concat inserts the separator between
the strings, but not after the last one, so we have to add the last newline. Thislast concatenation
duplicates the resulting string, which can be quite big. Thereis no option to make concat insert this
extra separator, but we can deceive it, inserting an extraempty stringint :

table.insert(t, "")
s = table.concat(t, "\n")

The extranewlinethat concat adds before this empty string is at the end of the resulting string, as we
wanted.

Programming in Lua

Page 148 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 12. Data Files and Persistence

12 - Data Files and Persistence

When dealing with datafiles, it is usually much easier to write the data than to read them back. When
we write afile, we have full control of what is going on. When we read afile, on the other hand, we do
not know what to expect. Besides all kinds of datathat a correct file may contain, a robust program
should also handle bad files gracefully. Because of that, coding robust input routines is always difficult.

Aswe saw in the example of Section 10.1, table constructors provide an interesting aternative for file

formats. With alittle extra work when writing data, reading becomestrivial. The technique isto write
our data file as Lua code that, when runs, builds the data into the program. With table constructors, these
chunks can look remarkably like aplain datafile.

Asusual, let us see an example to make things clear. If our datafileisin a predefined format, such as

CSV (Comma-Separated Values), we have little choice. (In Chapter 20, we will see how to read CSV in
Lua.) However, if we are going to create the file for later use, we can use L ua constructors as our format,

instead of CSV. In thisformat, we represent each data record as a L ua constructor. Instead of writing
something like

Donald E. Knuth, Literate Programm ng, CSLI, 1992
Jon Bentl| ey, More Progranmm ng Pearl s, Addi son- Wesl ey, 1990

in our datafile, we write

Entry{"Donald E. Knuth",
“Literate Progranm ng",
n @LI n ,
1992}

Entry{"Jon Bentl ey",
“More Programm ng Pearl s",
" Addi son- sl ey,
1990}

Remember that Entry{. ..} isthesameasEntry({...}),thatis acall tofunction Ent ry witha
table asits single argument. Therefore, this previous piece of datais al uaprogram. To read thisfile, we
only need to run it, with a sensible definition for Ent r y. For instance, the following program counts the

Page 149 of 351

number of entriesin adatafile:

| ocal count =0

function Entry (b) count = count + 1 end
dofil e("data")

print("nunber of entries: " .. count)

The next program collects in a set the names of all authors found in the file, and then prints them. (The
author's name isthefirst field in each entry; so, if b isan entry value, b[1] isthe author.)

| ocal authors = {} -- a set to collect authors
function Entry (b) authors[b[1l]] = true end

dofil e("data")

for nanme in pairs(authors) do print(nane) end

Notice the event-driven approach in these program fragments. The Ent r y function acts as a callback
function, which is called during the dof i | e for each entry in the datafile.

When file size is not a big concern, we can use name-value pairs for our representation:

Ent r y{
aut hor = "Donald E. Knuth",
title = "Literate Progranm ng",
publ i sher = "CSLI",
year = 1992

}

Ent r y{
aut hor = "Jon Bentl ey",
title = "More Programm ng Pearl s",
publ i sher = "Addi son- \Wesl ey",
year = 1990

}

(If thisformat reminds you of BibTeX, it is not a coincidence. BibTeX was one of the inspirations for
the constructor syntax in Lua.) Thisformat iswhat we call a self-describing data format, because each
piece of data has attached to it a short description of its meaning. Self-describing data are more readable
(by humans, at least) than CSV or other compact notations; they are easy to edit by hand, when
necessary; and they allow us to make small modifications without having to change the datafile. For
instance, if we add anew field we need only asmall change in the reading program, so that it supplies a
default value when the field is absent.

Page 150 of 351

With the name-value format, our program to collect authors becomes

| ocal authors = {} -- a set to collect authors
function Entry (b) authors[b.author] = true end
dofil e("data")

for nane in pairs(authors) do print(nane) end

Now the order of fieldsisirrelevant. Even if some entries do not have an author, we only have to change
Entry:

function Entry (D)
i f b.author then authors[b.author] = true end
end

Luanot only runsfast, but it also compiles fast. For instance, the above program for listing authors runs
in less than one second for 2 MB of data. Again, thisis not by chance. Data description has been one of

the main applications of Lua since its creation and we took great care to make its compiler fast for large
chunks.

Programming in Lua

Page 151 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 12. Data Files and Persistence

12.1 - Serialization

Fregquently we need to serialize some data, that is, to convert the data into a stream of bytes or
characters, so that we can saveit into afile or send it through a network connection. We can represent
serialized data as L ua code, in such away that, when we run the code, it reconstructs the saved values
into the reading program.

Usually, if we want to restore the value of a global variable, our chunk will be something like
var nane = <exp>, where<exp> isthe Lua code to create the value. The var nane isthe easy
part, so let us see how to write the code that creates avalue. For anumeric value, the task is easy:

function serialize (0)

I f type(o) == "nunber" then
lo.wite(0)
el se ...
end

For a string value, a naive approach would be something like

I f type(o) == "string" then

0. write(, 0, "'")

However, if the string contains specia characters (such as quotes or newlines) the resulting code will not
be avalid Lua program. Here, you may be tempted to solve this problem changing quotes:

I f type(o) == "string" then
io.wite("[[", o, "]11")

Do not do that! Double square brackets are intended for hand-written strings, not for automatically
generated ones. If a malicious user manages to direct your program to save something like"]]. . os.
execute('rm*")..[[" (forinstance, she can supply that string as her address), your final chunk
will be

varnane = [[]]..o0s.execute('rm*")..[[]]

Y ou will have abad surprise trying to load this "data’.

Page 152 of 351

To quote an arbitrary string in asecure way, thef or mat function, from the standard st r i ng library,
offersthe option " %" . It surrounds the string with double quotes and properly escapes double quotes,
newlines, and some other characters inside the string. Using this feature, our seri al i ze function now
looks like this:

function serialize (0)
I f type(o) == "nunber" then
lo.write(o)
el seif type(o) == "string" then
lo.write(string.format ("%", 0))
el se ...
end

Programming in Lua

Page 153 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 12. Data Files and Persistence

12.1.1 - Saving Tables without Cycles

Our next (and harder) task isto save tables. There are several ways to do that, according to what
restrictions we assume about the table structure. No single algorithm is appropriate for al cases. Simple
tables not only need simpler algorithms, but the resulting files can be more aesthetic, too.

Our first attempt is as follows:

function serialize (0)
i f type(o) == "nunber" then
ilo.write(o)
el seif type(o) == "string" then
lo.write(string.format ("%g", 0))
el seif type(o) == "table" then
lo.write("{\n")
for k,v in pairs(o) do
fo.wite(" ", k, " =")
serialize(v)
lo.write(",\n")

end

lo.write("}\n")
el se

error("cannot serialize a " .. type(0))
end

end

Despite its simplicity, that function does a reasonable job. It even handles nested tables (that is, tables
within other tables), as long as the table structure is atree (that is, there are no shared sub-tables and no
cycles). A small aesthetic improvement would be to indent occasional nested tables; you can try it as an
exercise. (Hint: Add an extra parameter toser i al i ze with the indentation string.)

The previous function assumes that all keysin atable are valid identifiers. If atable has numeric keys, or
string keys which are not syntactic valid Luaidentifiers, we arein trouble. A simple way to solve this
difficulty isto change the line

io.wite(" ", k, " =")

Page 154 of 351

to

lo.wite(" [")
serialize(k)
lo.wite("] =")

With this change, we improve the robustness of our function, at the cost of the aesthetics of the resulting
file. Compare:

-- result of serialize{a=12, b='Lua', key='another "one"'}
-- first version
{

a =12,

b = "Lua",

key = "another \"one\"",

-- second version

= 12,
"Lua",

["a"] =
["b"] =
["key"] = "another \"one\"",

We can improve this result by testing for each case whether it needs the square brackets; again, we will
leave thisimprovement as an exercise.

Programming in Lua

Page 155 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 12. Data Files and Persistence

12.1.2 - Saving Tables with Cycles

To handle tables with generic topology (i.e., with cycles and shared sub-tables) we need a different
approach. Constructors cannot represent such tables, so we will not use them. To represent cycles we
need names, so our next function will get as arguments the value to be saved plusits name. Moreover,
we must keep track of the names of the tables already saved, to reuse them when we detect acycle. We
will use an extratable for this tracking. This table will have tables asindices and their names as the

associated values.

We will keep the restriction that the tables we want to save have only strings or numbers as keys. The
following function serializes these basic types, returning the result:

function basicSerialize (0)

i f type(o) == "nunber" then
return tostring(o)
el se -- assune it is a string
return string.format ("%", 0)
end
end

The next function does the hard work. The saved parameter is the table that keeps track of tables
aready saved:

function save (nane, value, saved)

saved = saved or {} -- initial value
lo.wite(nanme, " =")
I f type(value) == "nunber" or type(value) == "string" then
|l o.write(basicSerialize(value), "\n")
el seif type(value) == "table" then
| f saved[val ue] then -- val ue al ready saved?
lo.wite(saved[value], "\n") -- use its previous nane
el se
saved[val ue] = nane -- save nane for next tine
lo.wite("{}\n") -- Create a new table
for k,v in pairs(value) do -- save its fields

| ocal fieldnanme = string.format ("%[%]", nane,
basi cSerial i ze(k))

Page 156 of 351

save(fi el dnanme, v, saved)
end
end
el se
error("cannot save a " .. type(value))
end
end

Asan example, if we build atablelike

a = {x=1, y=2; {3,4,5}}
a[2] = a -- cycle
a.z = a[l1l] -- shared sub-table

thenthecal save('a', a) will saveit asfollows:

a = {}
a[1] = {
a[1] [1]
a[1][2]
a[1][3]

i mn =

o b~ W

al[2] =
a["y"]
a[" x"
a["z"

2
1
al 1]

I I R e

(The actual order of these assignments may vary, asit depends on atable traversal. Nevertheless, the
algorithm ensures that any previous node needed in anew definition is already defined.)

If we want to save several values with shared parts, we can make the callsto save using the same
saved table. For instance, if we create the following two tables,

one", "two"}, 3}

{{"
{k = a[1]}

a
b
and save them as follows,

save('a', a)
save('b', b)

the result will not have common parts:

Page 157 of 351

a[1] = {}

a[1][1] = "one'
a[1][2] = "two"
a[2] =3

b = {}

b["k"] = {}
b["k"][1] = "one
b["k"][2] = "two"

However, if we use the same saved table for each call tosave,

| ocal t = {}
save('a', a, t)
save('b', b, t)

then the result will share common parts:

a = {}

a[1] = {}
a[1] [1]
a[1][2]
a[2] =3
b = {}

b["k"] = a[1]

n Onell
n t V\Dll

Asisusua in Lua, there are several other alternatives. Among them, we can save a value without giving
it aglobal name (instead, the chunk builds alocal value and returnsit); we can handle functions (by
building a table that associates each function to its name) etc. Lua gives you the power; you build the
mechanisms.

Programming in Lua

Page 158 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 13. M etatables and M etamethods

13 - Metatables and Metamethods

Usually, tablesin Luahave a quite predictable set of operations. We can add key-value pairs, we can
check the value associated with akey, we can traverse all key-value pairs, and that is all. We cannot add
tables, we cannot compare tables, and we cannot call atable.

Metatables allow us to change the behavior of atable. For instance, using metatables, we can define how
L ua computes the expression a+b, where a and b are tables. Whenever Luatriesto add two tables, it
checks whether either of them has a metatable and whether that metatable hasan __add field. If Lua
finds thisfield, it calls the corresponding value (the so-called metamethod, which should be a function)
to compute the sum.

Each table in Lua may have its own metatable. (Aswe will see later, userdata also can have metatables.)
Lua always create new tables without metatables:

t ={}
print (getnetatable(t)) -->nil

We can use set net at abl e to set or change the metatable of any table:

tl = {}
setnetatable(t, t1)
assert(getnetatable(t) == t1)

Any table can be the metatable of any other table; a group of related tables may share a common
metatabl e (which describes their common behavior); atable can be its own metatable (so that it
describesits own individual behavior). Any configuration isvalid.

Programming in Lua

Page 159 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 13. M etatables and M etamethods

13.1 - Arithmetic Metamethods

In this section, we will introduce a simple example to explain how to use metatables. Suppose we are
using tables to represent sets, with functions to compute the union of two sets, intersection, and the like.
Aswe did with lists, we store these functions inside a table and we define a constructor to create new
sets:

Set = {}

function Set.new (t)
| ocal set = {}
for , | inipairs(t) do set[l] = true end
return set

end

function Set.union (a,b)
| ocal res = Set.new}
for k in pairs(a) do res[k]
for k in pairs(b) do res[k]
return res

end

true end
true end

function Set.intersection (a,b)
| ocal res = Set.new}
for k in pairs(a) do
res[k] = b[Kk]
end
return res
end

To help checking our examples, we also define a function to print sets:

function Set.tostring (set)

| ocal s = "{"

| ocal sep = ""

for e in pairs(set) do
S =s .. sep.. e

Page 160 of 351

sep = ",
end
returns .. "}"
end

function Set.print (s)
print(Set.tostring(s))
end

Now, we want to make the addition operator ("+") compute the union of two sets. For that, we will
arrange that all tables representing sets share a metatable and this metatable will define how they react to
the addition operator. Our first step isto create aregular table that we will use as the metatable for sets.
To avoid polluting our namespace, we will storeit in the Set table:

Set.nt = {} -- nmetatable for sets

The next step isto modify the Set . newfunction, which creates sets. The new version has only one
extraline, which setsnt as the metatable for the tables that it creates:

function Set.new (t) -- 2nd version
| ocal set = {}
set net at abl e(set, Set.nt)
for , I inipairs(t) do set[l] = true end
return set
end

After that, every set we create with Set . newwill have that same table as its metatable:
sl = Set.new{10, 20, 30, 50}
s2 = Set.new30, 1}
print (getnetatabl e(sl)) --> table: 00672B60
print (getnetatabl e(s2)) --> table: 00672B60

Finally, we add to the metatable the so-called metamethod, afield add that describes how to perform
the union:

Set.m._ add = Set.union
Whenever Luatriesto add two sets, it will call this function, with the two operands as arguments.

With the metamethod in place, we can use the addition operator to do set unions:

Page 161 of 351

s3 = sl + s2
Set.print(s3) --> {1, 10, 20, 30, 50}

Similarly, we may use the multiplication operator to perform set intersection:

Set.mt._ mul = Set.intersection
Set.print((sl + s2)*sl) --> {10, 20, 30, 50}

For each arithmetic operator there is a corresponding field name in a metatable. Besides _add and
__mul ,thereare ___sub (for subtraction), __ di v (for divison), _unm(for negation), and __pow
(for exponentiation). We may define also thefield ___concat , to define a behavior for the
concatenation operator.

When we add two sets, there is no question about what metatable to use. However, we may write an
expression that mixes two values with different metatables, for instance like this:

= Set.new 1, 2, 3}

=s + 8

To choose a metamethod, Lua does the following: (1) If the first value has a metatable withan ___add
field, Lua uses this value as the metamethod, independently of the second value; (2) otherwise, if the
second value has a metatable with an ___add field, Lua uses this value as the metamethod; (3)

otherwise, Luaraises an error. Therefore, the last example will call Set . uni on, aswill the expressions
10 + sand"hy" + s.

L ua does not care about those mixed types, but our implementation does. If werunthes = s + 8
example, the error we get will beinside Set . uni on:

bad argunment #1 to " pairs' (table expected, got nunber)

If we want more lucid error messages, we must check the type of the operands explicitly before
attempting to perform the operation:

function Set.union (a,b)
I f getnetatable(a) ~= Set.nt or
get net at abl e(b) ~= Set.m then
error("attenpt to add' a set wth a non-set value", 2)
end

-- sanme as before

Page 162 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 13. M etatables and M etamethods

13.2 - Relational Metamethods

Metatables also allow usto give meaning to the relational operators, through the metamethods __eq
(equality), It (lessthan),and | e (Ilessor equal). There are no separate metamethods for the other
three relational operators, asLuatransatesa ~= btonot (a == b),a > btob < a,anda

>= ptob <= a.

(Big parentheses: Until Lua 4.0, all order operators were translated to asingle one, by trandatinga <=
btonot (b < a).However, thistrandation isincorrect when we have a partial order, that is, when
not all elementsin our type are properly ordered. For instance, floating-point numbers are not totally
ordered in most machines, because of the value Not a Number (NaN). According to the IEEE 754
standard, currently adopted by virtually every hardware, NaN represents undefined values, such asthe
result of O/ 0. The standard specifies that any comparison that involves NaN should result in false. That
meansthat NaN <= x isawaysfalse, but x < NaNisalso fase. That impliesthat the trandlation from
a <= btonot (b < a) isnotvalidinthiscase)

In our example with sets, we have asimilar problem. An obvious (and useful) meaning for <= in setsis
set containment: a <= b meansthat a isasubset of b. With that meaning, again it is possible that both
a <= bandb < a arefase; therefore, we need separate implementationsfor __ | e (lessor equal)
and |t (lessthan):

Set.nt. |le = function (a,b) -- set contai nnment
for k in pairs(a) do
if not b[k] then return fal se end
end
return true
end

Set.nt. It = function (a,b)
return a <= b and not (b <= a)
end

Finally, we can define set equality through set containment:

Set.m. eq = function (a,b)
return a <= b and b <= a
end

Page 163 of 351

After those definitions, we are now ready to compare sets:

sl = Set.newW2, 4}

s2 = Set.new4, 10, 2}

print(sl <= s2) --> true
print(sl < s2) --> true
print(sl >= sl) --> true
print(sl > sl) --> fal se
print(sl == s2 * sl1) -->true

Unlike arithmetic metamethods, relational metamethods do not support mixed types. Their behavior for
mixed types mimics the common behavior of these operatorsin Lua. If you try to compare a string with
anumber for order, Luaraises an error. Similarly, if you try to compare two objects with different
metamethods for order, Luaraises an error.

An equality comparison never raises an error, but if two objects have different metamethods, the
equality operation results in false, without even calling any metamethod. Again, this behavior mimics
the common behavior of Lua, which always classifies strings as different from numbers, regardless of
their values. Lua calls the equality metamethod only when the two objects being compared share this
metamethod.

Programming in Lua

Page 164 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 13. M etatables and M etamethods

13.3 - Library-Defined Metamethods

It isacommon practice for some libraries to define their own fields in metatables. So far, al the
metamethods we have seen are for the Lua core. It isthe virtual machine that detects that the values
involved in an operation have metatables and that these metatabl es define metamethods for that
operation. However, because the metatable is aregular table, anyone can useit.

Thet ost ri ng function provides atypical example. Aswe saw earlier, t ost r i ng representstables
in arather smple format:

print({}) --> table: 0x8062acO

(Notethat pri nt alwayscallst ostri ng toformat its output.) However, when formatting an object,
t ost ri ng first checks whether the object has a metatable witha___t ost ri ng field. If thisisthe
case, t ost ri ng callsthe corresponding value (which must be afunction) to do itsjob, passing the
object as an argument. Whatever this metamethod returnsistheresult of t ost ri ng.

In our example with sets, we have aready defined afunction to present a set as a string. So, we need
only tosetthe _t ostri ng field in the set metatable:

Set.nmt. tostring = Set.tostring

After that, whenever we call pri nt with aset asitsargument, pri nt callst ost ri ng that calls Set .
tostring:

sl = Set.new10, 4, 5}
print(sl) --> {4, 5, 10}

Theset net at abl e/get net at abl e functions use ametafield also, in this case to protect
metatables. Suppose you want to protect your sets, so that users can neither see nor change their

metatables. If you set a___net at abl e field in the metatable, get net at abl e will return the value of
thisfield, whereas set net at abl e will raise an error:

Set.nmt. netatable = "not your business”

sl = Set.new}

Page 165 of 351

print (getnetatabl e(sl)) --> not your business
set net at abl e(s1, {})
stdin:1: cannot change protected netatable

Programming in Lua

Page 166 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 13. M etatables and M etamethods

13.4 - Table-Access Metamethods

The metamethods for arithmetic and relational operators all define behavior for otherwise erroneous
situations. They do not change the normal behavior of the language. But Lua also offers away to change
the behavior of tables for two normal situations, the query and modification of absent fieldsin atable.

Programming in Lua

Page 167 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 13. M etatables and M etamethods

13.4.1 - The __i ndex Metamethod

| said earlier that, when we access an absent field in atable, the result isnil. Thisistrue, but it is not the
whole truth. Actually, such accesstriggers the interpreter to look for an __ i ndex metamethod: If there
Is no such method, as usually happens, then the access results in nil; otherwise, the metamethod will
provide the result.

The archetypal example here isinheritance. Suppose we want to create several tables describing
windows. Each table must describe several window parameters, such as position, size, color scheme, and
the like. All these parameters have default values and so we want to build window objects giving only
the non-default parameters. A first alternative is to provide a constructor that fills in the absent fields. A
second alternative is to arrange for the new windows to inherit any absent field from a prototype
window. First, we declare the prototype and a constructor function, which creates new windows sharing
ametatable:

-- Create a nanespace
W ndow = {}
-- create the prototype with default val ues
W ndow. prot otype = {x=0, y=0, w dth=100, hei ght=100, }
-- create a netatable
W ndow. mt = {}
-- declare the constructor function
functi on W ndow. new (0)
set net at abl e(o, W ndow. nt)
return o
end

Now, we definethe i ndex metamethod:

Wndow. mt. _index = function (table, key)
return W ndow. prot ot ype[key]
end

After that code, we create a new window and query it for an absent field:

w = W ndow. new{ x=10, y=20}
print(w. w dth) --> 100

Page 168 of 351

When Lua detects that w does not have the requested field, but has a metatable withan __ i ndex field,
Luacdlsthis i ndex metamethod, with arguments w (the table) and " wi dt h" (the absent key). The
metamethod then indexes the prototype with the given key and returns the result.

Theuse of the i ndex metamethod for inheritance is so common that L ua provides a shortcut.
Despite the name, the i ndex metamethod does not need to be afunction: It can be atable, instead.
When it isafunction, Luacallsit with the table and the absent key asits arguments. When it isatable,
L uaredoes the access in that table. Therefore, in our previous example, we could declare i ndex
simply as

W ndow. nt. i ndex = W ndow. pr ot ot ype

Now, when Lualooks for the metatable's 1 ndex field, it finds the value of W ndow. pr ot ot ype,
which is atable. Consequently, Lua repeats the access in this table, that is, it executes the equivalent of

W ndow. pr ot ot ype["wi dt h"]
which gives the desired resullt.

Theuseof atableasan i ndex metamethod provides a cheap and ssmple way of implementing
single inheritance. A function, although more expensive, provides more flexibility: We can implement
multiple inheritance, caching, and severa other variations. We will discuss those forms of inheritance in

Chapter 16.

When we want to access atable without invoking its i ndex metamethod, we use ther awget
function. Thecall rawget (t, i) doesaraw accessto tablet . Doing araw access will not speed up
your code (the overhead of afunction call kills any gain you could have), but sometimes you need it, as
we will seelater.

Programming in Lua

Page 169 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 13. M etatables and M etamethods

13.4.2 - The __new ndex Metamethod

The __new ndex metamethod does for table updateswhat i ndex does for table accesses. When
you assign avalue to an absent index in atable, the interpreter looksfor a__newi ndex metamethod:
If thereis one, the interpreter callsit instead of making the assignment. Like __i ndex, if the
metamethod is a table, the interpreter does the assignment in that table, instead of in the original one.
Moreover, thereis araw function that allows you to bypass the metamethod: Thecall r awset (t, Kk,
v) setsthevaluev inkey k of tablet without invoking any metamethod.

Thecombineduseof i ndex and ___new ndex metamethods allows several powerful constructsin
Lua, from read-only tables to tables with default values to inheritance for object-oriented programming.
In the rest of this chapter we see some of these uses. Object-oriented programming has its own chapter.

Programming in Lua

Page 170 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 13. M etatables and M etamethods

13.4.3 - Tables with Default Values

The default value of any field in aregular tableisnil. It is easy to change this default value with
metatables:

function setDefault (t, d)

local nt = {_ index = function () return d end}
setnet at abl e(t, nt)
end

tab = {x=10, y=20}

print(tab.x, tab.z) --> 10 ni |
set Defaul t (tab, 0)
print(tab.x, tab.z) --> 10 0

Now, whenever we access an absent field int ab, its___ i ndex metamethod is called and returns zero,
which isthe value of d for that metamethod.

Theset Def aul t function creates a new metatable for each table that needs a default value. This may
be expensive if we have many tables that need default values. However, the metatable has the default
value d wired into itself, so the function cannot use a single metatable for all tables. To alow the use of
asingle metatable for tables with different default values, we can store the default value of each table in
the table itself, using an exclusive field. If we are not worried about name clashes, we can use akey like
" " for our exclusivefield:

local nt = {_ index = function (t) returnt._ __ end}
function setDefault (t, d)

t. =d

setnetat abl e(t, nt)
end

If we are worried about name clashes, it is easy to ensure the uniqueness of this special key. All we need
ISsto create anew table and use it as the key:

| ocal key = {} -- uni que key

local nt = {_ index = function (t) return t[key] end}
function setDefault (t, d)

Page 171 of 351

t[key] = d
setnetatabl e(t, nt)
end

An aternative approach to associating each table with its default value is to use a separate table, where
the indices are the tables and the values are their default values. However, for the correct
implementation of this approach we need a special breed of table, called weak tables, and so we will not
use it here; we will return to the subject in Chapter 17.

Another alternative isto memoize metatables in order to reuse the same metatable for tables with the
same default. However, that needs weak tables too, so that again we will have to wait until Chapter 17.

Programming in Lua

Page 172 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 13. M etatables and M etamethods

13.4.4 - Tracking Table Accesses

Both i ndex and ___new ndex arerelevant only when the index does not exist in the table. The
only way to catch all accessesto atable isto keep it empty. So, if we want to monitor all accessesto a
table, we should create a proxy for the real table. This proxy is an empty table, with proper i ndex
and __new ndex metamethods, which track all accesses and redirect them to the original table.
Supposethat t isthe original table we want to track. We can write something like this:

t = {} -- original table (created sonewhere)

-- keep a private access to original table
local t =1t

- create proxy

—+ 1

= {}
-- Create netatable
| ocal nt = {
__index = function (t,k)
print("*access to elenent " .. tostring(k))
return _t[Kk] -- access the original table
end,

__newi ndex = function (t,k,v)

print("*update of elenent " .. tostring(k)
to " .. tostring(v))
_t[Kk] =V -- update original table
end

}
setnet at abl e(t, nt)

This code tracks every accesstot :

>t[2] = "hello

*update of elenent 2 to hello
> print(t[2])

*access to elenent 2

Page 173 of 351

hel |l o

(Notice that, unfortunately, this scheme does not allow usto traverse tables. The pai r s function will
operate on the proxy, not on the original table.)

If we want to monitor severa tables, we do not need a different metatable for each one. Instead, we can
somehow associate each proxy to its original table and share a common metatable for all proxies. A
simple way to associate proxiesto tablesis to keep the original table in a proxy'sfield, aslong as we can
be sure that this field will not be used for other means. A simple way to ensure that isto create a private
key that nobody else can access. Putting these ideas together results in the following code:

-- Ccreate private index
| ocal index = {}

-- Create netatable

| ocal nt = {
__index = function (t,Kk)
print("*access to elenent " .. tostring(k))
return t[index][Kk] -- access the original table
end,

__newi ndex = function (t,k,v)

print("*update of elenent " .. tostring(k)

" to " tostring(v))

t[index][k] = v -- update original table
end

}

function track (t)
| ocal proxy = {}
proxy[index] =t
set net at abl e(proxy, nt)
return proxy

end

Now, whenever we want to monitor atablet , al wehavetodoist = track(t).

Programming in Lua

Page 174 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 13. M etatables and M etamethods

13.4.5 - Read-Only Tables

It is easy to adapt the concept of proxies to implement read-only tables. All we haveto doisto raisean
error whenever we track any attempt to update the table. For the i ndex metamethod, we can use a
table---the original table itself---instead of afunction, as we do not need to track queries; it issimpler
and quite more efficient to redirect all queriesto the original table. This use, however, demands a new
metatable for each read-only proxy, with i ndex pointing to the original table:

function readOnly (t)
| ocal proxy = {}
|l ocal m = { -- create netatable
__index =1,
__newi ndex = function (t,k,v)
error("attenpt to update a read-only table", 2)
end
}
set net at abl e(proxy, nt)
return proxy
end

(Remember that the second argument to er r or , 2, directs the error message to where the update was
attempted.) As an example of use, we can create a read-only table for weekdays:

days = readOnl y{" Sunday", "Monday", "Tuesday", "Wdnesday",
"Thur sday”, "Friday", "Saturday"}

print(days[1]) --> Sunday
days[2] = "Noday"
stdin:1l: attenpt to update a read-only table

Programming in Lua

Page 175 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 14. The Environment

14 - The Environment

Luakeepsall itsglobal variablesin aregular table, called the environment. (To be more precise, Lua
keepsits"global" variablesin several environments, but we will ignore this multiplicity for awhile.)
One advantage of this structure isthat it simplifies the internal implementation of Lua, because thereis
no need for a different data structure for global variables. The other (actually the main) advantage is that
we can manipulate this table as any other table. To facilitate such manipulations, Lua stores the
environment itself in aglobal variable G (Yes, G _Gisequa to _G) For instance, the following
code prints the names of all global variables defined in the current environment:

for nin pairs(_GQG do print(n) end

In this chapter, we will see several useful technigques to manipul ate the environment.

Programming in Lua

Page 176 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 14. The Environment

14.1 - Accessing Global Variables with Dynamic Names

Usually, assignment is enough for getting and setting global variables. However, often we need some
form of meta-programming, such as when we need to manipulate aglobal variable whose nameis stored
In another variable, or somehow computed at run time. To get the value of this variable, many
programmers are tempted to write something like

| oadstring("value =" .. varnane)()

or

value = | oadstring("return var nane) ()

If var nane isx, for instance, the concatenation will resultin"return x" (or"val ue = x",with
the first form), which when run achieves the desired result. However, such codes involve the creation
and compilation of anew chunk and lots of extrawork. Y ou can accomplish the same effect with the
following code, which is more than an order of magnitude more efficient than the previous one:

val ue = { var nane]

Because the environment is aregular table, you can ssmply index it with the desired key (the variable
name).

In asimilar way, you can assign to a global variable whose hame is computed dynamically, writing G

[var nane] = val ue. Beware, however: Some programmers get alittle excited with these functions
and end up writing codelike_ (d "a"] = _{d "var1"],whichisjust acomplicated way to write a
= varl.

A generalization of the previous problem isto allow fieldsin adynamic name, suchas"i o. r ead" or
"a. b. c. d".Wesolvethis problem with aloop, which startsat _Gand evolvesfield by field:

function getfield (f)

local v = _G -- start wwth the table of gl obals
for win string.gfind(f, "[%_]+") do

v = v[w
end

Page 177 of 351

return v
end

Werely ongf i nd, fromthest ri ng library, to iterate over al wordsinf (where"word" isasequence
of one or more a phanumeric characters and underscores).

The corresponding function to set fields is alittle more complex. An assignment like
a.b.c.d.e = v
Is exactly equivalent to

| ocal tenp = a.b.c.d
tenp.e = v

That is, we must retrieve up to the last name; we must handle the last field separately. The new
set fi el d function also creates intermediate tables in a path when they do not exist:

function setfield (f, v)

local t = _G -- start wth the table of gl obals
for w, din string.gfind(f, "([%]+)(.?)") do
if d =="." then -- not last field?
tfw =t[w or {} -- Ccreate table if absent
t =t[wW -- get the table
el se -- last field
t[w =v -- do the assignnent
end
end
end

This new pattern captures the field name in variable wand an optional following dot in variabled. If a
field name is not followed by a dot then it is the last name. (We will discuss pattern matching at great
length in Chapter 20.)
With the previous functions, the call

setfield("t.x.y", 10)
creates aglobal tablet , another tablet . x, and assigns10tot . X. y:

print(t.x.y) --> 10

Page 178 of 351

print(getfield("t.x.y")) --> 10

Programming in Lua

Page 179 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 14. The Environment

14.2 - Declaring Global Variables

Global variablesin Luado not need declarations. Although thisis handy for small programs, in larger
programs a simple typo can cause bugs that are difficult to find. However, we can change that behavior
if we like. Because Luakeepsits global variablesin aregular table, we can use metatables to changeits
behavior when accessing global variables.

A first approach is asfollows:

setnetatable(G {
__newi ndex = function (_, n)

error("attenpt to wite to undeclared variable "..n, 2)
end,
__index = function (_, n)

error("attenpt to read undeclared variable "..n, 2)

end,

1)

After that code, any attempt to access a hon-existent global variable will trigger an error:

>a =1
stdin:1l: attenpt to wite to undeclared variable a

But how do we declare new variables? With r awset , which bypasses the metamethod:

function declare (nanme, initval)
rawset (_G nane, initval or false)
end

The or with false ensures that the new global always gets a value different from nil. Notice that you
should define this function before installing the access control, otherwise you get an error: After al, you
are trying to create anew global, decl ar e. With that function in place, you have complete control over
your global variables:

>a =1
stdin:1: attenpt to wite to undeclared variable a

Page 180 of 351

> decl are"a"
> a =1 -- K

But now, to test whether a variable exists, we cannot ssmply compare it to nil; if it isnil, the access will
throw an error. Instead, we use r awget , which avoids the metamethod:

if rawget(_G var) == nil then
-- “var' is undeclared

end

It is not difficult to change that control to allow global variables with nil value. All we need isan
auxiliary table that keeps the names of declared variables. Whenever a metamethod is called, it checksin
that table whether the variable is undeclared or not. The code may be like this:

| ocal decl aredNanes = {}
function declare (nane, initval)
rawset (_G nane, initval)
decl aredNanes[nane] = true
end
setnetatable(G {
__newi ndex = function (t, n, v)
i f not decl aredNanes[n] then

error("attenpt to wite to undeclared var. "..n, 2)
el se
rawset (t, n, v) -- do the actual set
end
end,
__index = function (_, n)
i f not decl aredNanes[n] then
error("attenpt to read undeclared var. "..n, 2)
el se
return nil
end
end,

})

For both solutions, the overhead is negligible. With the first solution, the metamethods are never called
during normal operation. In the second, they may be called, but only when the program accesses a
variable holding anil.

Page 181 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 14. The Environment

14.3 - Non-Global Environments

One of the problems with the environment isthat it is global. Any modification you do on it affects all
parts of your program. For instance, when you install a metatable to control global access, your whole
program must follow the guidelines. If you want to use a library that uses global variables without
declaring them, you are in bad luck.

Lua 5.0 ameliorates this problem by allowing each function to have its own environment. That may

sound stra_n(];e at first; after al, the goal of atable of global variablesisto be global. However, in Section
15.4 we will see that this facility allows several interesting constructions, where global values are still

avallable everywhere.

Y ou can change the environment of a function with the set f env function (set function environment). It
receives the function and the new environment. Instead of the function itself, you can also give a
number, meaning the active function at that given stack level. Number 1 means the current function,
number 2 means the function calling the current function (which is handy to write auxiliary functions
that change the environment of their caller), and so on.

A navefirst attempt to use set f env fails miserably. The code

a=1 -- create a gl obal variable
-- change current environnment to a new enpty table
setfenv(l, {})

print(a)
resultsin
stdin:5: attenpt to call global "print' (a nil value)

(You must run that code in asingle chunk. If you enter it line by line in interactive mode, each lineisa
different function and the call to set f env only affectsits own line.) Once you change your
environment, all global accesses will use this new table. If it is empty, you lost all your global variables,
even G So, you should first populate it with some useful values, such as the old environment:

a=1 -- create a gl obal variable
-- change current environnent

Page 182 of 351

setfenv(l, { G= _G)
_Gprint(a) -->nil
_Gprint(_Ga) -->1

Now, when you access the "global" _ G its value is the old environment, wherein you will find the field
print.

Y ou can populate your new environment using inheritance al so:

a=1

| ocal newgt = {} -- create new environnent
setnet at abl e(newgt, {__index = _G)

setfenv(l, newgt) -- set it

print(a) -->1

In this code, the new environment inherits both pr i nt and a from the old one. Nevertheless, any
assignment goes to the new table. There is no danger of changing areally global variable by mistake,
although you still can change them through _ G

-- continuing previous code

a = 10

print(a) --> 10
print(_G a) -->1
_Ga =20

print(_G a) --> 20

When you create a new function, it inherits its environment from the function creating it. Therefore, if a
chunk changes its own environment, all functions it defines afterward will share this same environment.
Thisisauseful mechanism for creating namespaces, as we will see in the next chapter.

Programming in Lua

Page 183 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 15. Packages

15 - Packages

Many languages provide mechanisms to organize their space of global names, such as modulesin
Modula, packages in Java and Perl, or namespaces in C++. Each of these mechanisms has different rules
regarding the use of elements declared inside a package, visibility, and other details. Nevertheless, all of
them provide a basic mechanism to avoid collision among names defined in different libraries. Each
library creates its own namespace and names defined inside this namespace do not interfere with names
In other namespaces.

Lua does not provide any explicit mechanism for packages. However, we can implement them easily
with the basic mechanisms that the language provides. The main ideais to represent each package by a
table, as the basic libraries do.

An obvious benefit of using tables to implement packagesis that we can manipul ate packages like any
other table and use the whole power of Luato create extrafacilities. In most languages, packages are not
first-class values (that is, they cannot be stored in variables, passed as arguments to functions, etc.), so
these languages need special mechanisms for each extratrick you may do with a package.

In Lua, although we always represent packages as tables, there are several different methods to write a
package. In this chapter, we cover some of these methods.

Programming in Lua

Page 184 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 15. Packages

15.1 - The Basic Approach

A simple way to define a package isto write the package name as a prefix for each object in the
package. For instance, suppose we are writing a library to manipul ate complex numbers. We represent
each complex number as atable, with fieldsr (real part) andi (imaginary part). We declare all our new
operations in another table, which acts as a new package:

complex = {}
function conplex.new (r, i) return {r=r, i=i} end

-- defines a constant i
conpl ex.i = conpl ex. newm(0, 1)

function conpl ex.add (cl, c2)
return conplex.new(cl.r + c2.r, cl.i + c2.i)
end

function conpl ex.sub (cl, c2)
return conplex.new(cl.r - c2.r, cl.i - c2.i)
end

function conplex.mul (cl, c2)
return conplex.new(cl.r*c2.r - cl.i*c2.i,
cl.r*xc2.i + cl.i*c2.r)
end
function conplex.inv (c)
local n =c.r*"2 + c.i"2
return conplex.new(c.r/n, -c.i/n)
end

return conpl ex
Thislibrary defines one single global name, conpl ex. All other definitions go inside this table.

With this definition, we can use any complex operation qualifying the operation name, like this:

Page 185 of 351

c = conpl ex. add(conpl ex.i, conpl ex.new 10, 20))

This use of tables for packages does not provide exactly the same functionality as provided by real
packages. First, we must explicitly put the package name in every function definition. Second, a function
that calls another function inside the same package must qualify the name of the called function. We can
ameliorate those problems using afixed local name for the package (P, for instance), and then assigning
thislocal to the final name of the package. Following this guideline, we would write our previous
definition like this:

| ocal P = {}

conplex = P -- package nane

P.i ={r=0, i=1}

function P.new (r, i) return {r=r, i=i} end

function P.add (cl, c2)
return P.newm(cl.r + c2.r, cl.i + c2.i)
end

Whenever afunction calls another function inside the same package (or whenever it calls itself
recursively), it still needs to prefix the name. At least, the connection between the two functions does not
depend on the package name anymore. Moreover, there is only one place in the whole package where
we write the package name.

Maybe you noticed that the last statement in the package was
return conpl ex

Thisreturn is not necessary, because the package is aready assigned to aglobal variable (conpl ex).
Nevertheless, we consider a good practice that a package returns itself when it opens. The extrareturn
costs nothing, and allows alternative ways to handle the package.

Programming in Lua

Page 186 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 15. Packages

15.2 - Privacy

Sometimes, a package exports all its names; that is, any client of the package can use them. Usually,
however, it is useful to have private namesin a package, that is, names that only the package itself can
use. A convenient way to do that in Luais to define those private names as local variables. For instance,
let us add to our example a private function that checks whether avalue is avalid complex number. Our
example now looks like this:

| ocal P
conpl ex

{}
P

| ocal function checkConpl ex (c)
if not ((type(c) == "table") and
t onunber(c.r) and tonunber(c.i)) then
error("bad conpl ex nunber", 3)
end
end

function P.add (cl, c2)

checkConpl ex(cl);

checkConpl ex(c2);

return P.newm(cl.r + c2.r, cl.i + c2.i)
end

return P

What are the pros and cons of this approach? All names in a package live in a separate namespace. Each
entity in apackage is clearly marked as public or private. Moreover, we have real privacy: Private
entities are inaccessible outside the package. A drawback of this approach isits verbosity when
accessing other public entities inside the same package, as every access till needs the prefix P. A bigger
problem is that we have to change the calls whenever we change the status of a function from private to
public (or from public to private).

Thereis an interesting solution to both problems at once. We can declare all functions in our package as
local and later put them in the final table to be exported. Following this approach, our conpl ex

Page 187 of 351

package would be like this:

| ocal function checkConplex (c)
I f not ((type(c) == "table")
and tonunber(c.r) and tonunber(c.i)) then
error("bad conpl ex nunber", 3)
end
end

| ocal function new (r, i) return {r=r, i=i} end

| ocal function add (cl, c2)
checkConpl ex(cl);
checkConpl ex(c2);
return new(cl.r + c2.r, cl.i + c2.i)

end

compl ex = {
new = new,
add = add,
sub = sub,
mul = nul,
div = div,

}

Now we do not need to prefix any calls, so that callsto exported and private functions are equal. There
iIsasimplelist at the end of the package that defines explicitly which namesto export. Most people find
more natural to have thislist at the beginning of the package, but we cannot put the list at the top,
because we must define the local functionsfirst.

Programming in Lua

Page 188 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 15. Packages

15.3 - Packages and Files

Typicaly, when we write a package, we put al its code in asingle file. Then, to open or import a
package (that is, to make it available) we just execute that file. For instance, if we have afile conpl ex.
| ua with the definition of our complex package, the command r equi re " conpl ex" will open the
package. Remember that r equi r e avoidsloading the same package multiple times.

A recurring issue is the relationship between the file name and the package name. Of course, it is a good
ideato relate them, becauser equi r e works with files, not with packages. One solution isto name the
file after the package, followed by some known extension. Lua does not fix any extension; itisup to
your path to do that. For instance, if your path includes a component like" / usr/ | ocal /

| ual i bs/ ?. 1 ua", than the package conpl ex may liveinaconpl ex. | ua file.

Some people prefer the reverse, to name the package after the file name, dynamically. That is, if you
rename the file, the package is renamed, too. This solution gives you more flexibility. For instance, if
you get two different packages with the same name, you do not have to change any of them, just rename
one file. To implement this naming schemein Lua, we use the REQUI REDNAME variable. Remember
that, when r equi r e loads afile, it defines that variable with the virtua file name. So, you can write
something like the following in your package:

| ocal P = {} - - package

I f _REQUI REDNAME == ni |l then
conplex = P

el se
_§ REQUI REDNAME] = P

end

The test allows us to use the package without r equi r e. If _ REQUI REDNAME is not defined, we use a
fixed name for the package (conpl ex, in the example). Otherwise, the package registersitself with the
virtual file name, whatever it is. If auser putsthelibrary infilecpx. | ua and runsr equi r e" cpx",
the package loads itself in table cpx. If another user movesthelibrary to filecpx_v1. | ua andruns
require"cpx_vil", the package loadsitself intablecpx_v1.

Programming in Lua

Page 189 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 15. Packages

15.4 - Using the Global Table

One drawback of all these methods to create packages is that they call for special attention from the
programmer. It isall too easy to forget alocal in a declaration, for instance. Metamethods in the table of
global variables offer some interesting alternative techniques for creating packages. The common part in
all these techniquesisthe use of an exclusive environment for the package. Thisis easily done: If we
change the environment of the package's main chunk, all functionsit creates will share this new
environment.

The simplest technique does little more than that. Once the package has an exclusive environment, not
only all itsfunctions share thistable, but also al its global variables go to this table. Therefore, we can
declare all public functions as global variables and they will go to a separate table automatically. All the
package has to do isto register this table as the package name. The next code fragment illustrates this
technique for the conpl ex library:

| ocal P = {}
conmplex = P
setfenv(l, P)

Now, when we declare function add, it goesto conpl ex. add:

function add (cl, c2)
return new(cl.r + c2.r, cl.i + c2.i1)
end

Moreover, we can call other functions from this package without any prefix. For instance, add gets new
from its environment, that is, it getsconpl ex. new.

This method offers a good support for packages, with little extra work on the programmer. It needs no
prefixes at all. Thereis no difference between calling an exported and a private function. If the
programmer forgetsal ocal , she does not pollute the global namespace; instead, only a private
function becomes public. Moreover, we can use it together with the techniques from the previous section
for package names:

| ocal P = {} -- package
I f _REQUI REDNAME == ni |l then

Page 190 of 351

conplex = P
el se

_§ _REQUI REDNAME] = P
end
setfenv(l, P)

What is missing, of course, is access to other packages. Once we make the empty table P our
environment, we lose access to al previous global variables. There are several solutionsto this, each
with its pros and cons.

The simplest solution isinheritance, as we saw earlier:

| ocal P = {} -- package
setnetatable(P, {__index = _G)
setfenv(l, P)

(You must call set net at abl e before caling set f env; can you tell why?) With this construction,
the package has direct access to any global identifier, but it pays a small overhead for each access. A
funny consequence of this solution is that, conceptually, your package now contains all global variables.
For instance, someone using your package may call the standard sine function writing conpl ex.

mat h. si n(x) . (Perl's package system has this peculiarity, too.)

Another quick method of accessing other packagesisto declare alocal that holds the old environment:

| ocal P = {}
pack = P
local G= G
setfenv(1l, P)

Now you must prefix any access to external nameswith _G. , but you get faster access, because thereis
no metamethod involved. Unlike inheritance, this method gives you write access to the old environment;
whether thisis good or bad is debatable, but sometimes you may need this flexibility.

A more disciplined approach is to declare as locals only the functions you need, or at most the packages
you need:

| ocal P = {}
pack = P

-- I nport Section:

-- declare everything this package needs from outside
| ocal sqrt = math.sqrt

Page 191 of 351

local io =1io0

-- no nore external access after this point
setfenv(l, P)

This technique demands more work, but it documents your package dependencies better. It also results
in faster code than the previous schemes.

Programming in Lua

Page 192 of 351

Programming in Lua

Part 11. Tables and Objects Chapter 15. Packages

15.5 - Other Facilities

As| said earlier, the use of tables to implement packages allows us to use the whole power of Luato
manipulate them. There are unlimited possibilities. Here | will give only afew suggestions,

We do not need to define all public items of a package together. For instance, we can add anew item to
our conpl ex package in a separate chunk:

function conplex.div (cl, c2)
return conplex.nul (cl, conplex.inv(c2))
end

(But notice that the private part is restricted to one file, which | think is agood thing.) Conversely, we
can define more than one package in the same file. All we have to do is to enclose each oneinside ado
block, so that itslocal variables are restricted to that block.
Outside the package, if we are going to use some operations often, we can give them local names:

| ocal add, i = conpl ex.add, conplex.i

cl = add(conpl ex. newm(10, 20), i)

Or elsg, if we do not want to write the package name over and over, we can give a shorter local name to
the package itself:

| ocal C = conpl ex
cl = C add(C new10, 20), Ci)

It is easy to write afunction that unpacks a package, putting all its names into the global namespace:
functi on openpackage (ns)
for n,v in pairs(ns) do _gn] = v end

end

openpackage(conpl ex)
cl = mul (new(10, 20), i)

Page 193 of 351

If you are afraid of name clashes when opening a package, you can check the name before the
assignment:

functi on openpackage (ns)
for n,v in pairs(ns) do
if dn] ~=nil then
error("name clash: " .. n .. " is already defined")
end
_gn] =v
end
end

Because packages themselves are tables, we can even nest packages; that is, we can create a package
inside another one. However, this facility is seldom necessary.

Another interesting facility is autoload, which only loads afunction if the function is actually used by
the program. When we |oad an autoload package, it creates an empty table to represent the package and
setsthe i ndex metamethod of the table to do the autoload. Then, when we call any function that is
not yet loaded, the i ndex metamethod isinvoked to load it. Subsequent calls find the function
already loaded; therefore, they do not activate the metamethod.

A simple way to implement autoload can be as follows. Each function is defined in an auxiliary file.

(There can be more than one function in each file.) Each of these files definesits functions in a standard
way, for instance like here:

function packl.foo ()
ena.
function packl. goo ()
ena.

However, the file does not create the package, because the package already exists when the function is
loaded.

In the main package we define an auxiliary table that describes where we can find each function:

| ocal |ocation = {
foo “/usr/local/lual/lib/packl 1.lua",
goo “/usr/local/lual/lib/packl 1.lua",

Page 194 of 351

f ool
gool

“/usr/local/lual/lib/packl 2.lua",
“/usr/local/lual/lib/packl 3.lua",

}

Then we create the package and define its metamethod:

packl = {}
set net at abl e(packl, {_ _index = function (t, funcnane)
| ocal file = |ocation[funcnane]
If not file then
error (" package packl does not define " .. funcnane)
end
assert(loadfile(file))() -- load and run definition
return t[funcnane] -- return the function
end})

return packl

After loading this package, the first time the program executes packl. f oo() it will invoke that

__I ndex metamethod, which is quite ssmple. It checks that the function has a corresponding file and
loads that file. The only subtlety isthat it must not only load the file, but also return the function as the
result of the access.

Because the entire system iswritten in Lua, it is easy to change its behavior. For instance, the functions
may be defined in C, with the metamethod using | oadl i b to load them. Or we can set a metamethod
in the global table to autoload entire packages. The possibilities are endless.

Programming in Lua

Page 195 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 16. Object-Oriented Programming

16 - Object-Oriented Programming

A tablein Luais an object in more than one sense. Like objects, tables have a state. Like objects, tables
have an identity (a selfness) that is independent of their values; specifically, two objects (tables) with the
same value are different objects, whereas an object can have different values at different times, but it is
always the same object. Like objects, tables have alife cycle that is independent of who created them or
where they were created.

Objects have their own operations. Tables also can have operations:

Account = {bal ance = 0}
function Account.w t hdraw (v)

Account . bal ance = Account. bal ance - v
end

This definition creates a new function and storesit in field wi t hdr aw of the Account object. Then,
wecan cal it as

Account . w t hdraw(100. 00)
Thiskind of function is amost what we call a method. However, the use of the global name Account
inside the function is a bad programming practice. First, this function will work only for this particul ar
object. Second, even for this particular object the function will work only aslong as the object is stored
in that particular global variable; if we change the name of this object, wi t hdr aw does not work any

more:

a = Account; Account = nil
a.w t hdrawm(100. 00) -- ERRCR!

Such behavior violates the previous principle that objects have independent life cycles.

A more flexible approach is to operate on the receiver of the operation. For that, we would have to
define our method with an extra parameter, which tells the method on which object it has to operate.
This parameter usually has the name self or this:

function Account.w thdraw (self, v)

Page 196 of 351

sel f. bal ance = sel f.bal ance - v
end

Now, when we call the method we have to specify on which object it has to operate:
al = Account; Account = nil
éi:Wthdram(al, 100.00) -- XK

With the use of a self parameter, we can use the same method for many objects:

a2 = {bal ance=0, w thdraw = Account.w t hdraw}
a2.w t hdraw(a2, 260.00)

Thisuse of a self parameter is a central point in any object-oriented language. Most OO languages have
this mechanism partly hidden from the programmer, so that she does not have to declare this parameter
(although she still can use the name self or thisinside a method). Lua can also hide this parameter, using
the colon operator. We can rewrite the previous method definition as

function Account:w thdraw (v)
sel f. bal ance = self. bal ance - v
end

and the method call as
a: wi t hdraw(100. 00)

The effect of the colon isto add an extra hidden parameter in a method definition and to add an extra
argument in amethod call. The colon isonly a syntactic facility, although a convenient one; thereis
nothing really new here. We can define a function with the dot syntax and call it with the colon syntax,
or vice-versa, as long as we handle the extra parameter correctly:

Account = { bal ance=0,
wi t hdraw = function (self, v)
sel f. bal ance = sel f.bal ance - v
end

}

function Account:deposit (V)
sel f. bal ance = self.bal ance + v
end

Page 197 of 351

Account . deposi t (Account, 200. 00)
Account : wi t hdraw(100. 00)

Now our objects have an identity, a state, and operations over this state. They still lack a class system,
inheritance, and privacy. Let us tackle the first problem: How can we create several objects with similar
behavior? Specifically, how can we create several accounts?

Programming in Lua

Page 198 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 16. Object-Oriented Programming

16.1 - Classes

A class works as amold for the creation of objects. Several OO languages offer the concept of class. In
such languages, each object is an instance of a specific class. Lua does not have the concept of class;
each object definesits own behavior and has a shape of its own. Nevertheless, it is not difficult to
emulate classesin Lua, following the lead from prototype-based languages, such as Self and
NewtonScript. In those languages, objects have no classes. Instead, each object may have a prototype,
which isaregular object where the first object looks up any operation that it does not know about. To
represent a class in such languages, we ssimply create an object to be used exclusively as a prototype for
other objects (its instances). Both classes and prototypes work as a place to put behavior to be shared by
severa objects.

In Lua, it istrivial to implement prototypes, using the idea of inheritance that we saw in the previous
chapter. More specificaly, if we have two objectsa and b, all we have to do to make b a prototype for a
IS

setnetatable(a, {_ _index = b})

After that, a looks up in b for any operation that it does not have. To see b asthe class of object a isnot
much more than a change in terminology.

L et us go back to our example of a bank account. To create other accounts with behavior similar to
Account , we arrange for these new objects to inherit their operations from Account , using the

__I ndex metamethod. Note a small optimization, that we do not need to create an extratable to be the
metatable of the account objects; we can use the Account tableitself for that purpose:

function Account: new (0)

o =o0 or {} -- create object if user does not provide one
set net at abl e(o, self)
self. index = self
return o
end

(Whenwe call Account : new, sel f isequal to Account ; so we could have used Account directly,
instead of sel f . However, theuse of sel f will fit nicely when we introduce class inheritance, in the
next section.) After that code, what happens when we create a new account and call a method on it?

Page 199 of 351

a = Account: new{bal ance = 0}
a: deposi t (100. 00)

When we create this new account, a will have Account (the self inthecall Account : new) asits
metatable. Then, when we call a: deposi t (100. 00) , weare actualy calling a. deposi t (a,

100. 00) (thecolonisonly syntactic sugar). However, Lua cannot find a" deposi t " entry intable a;
S0, it looks into the metatable's i ndex entry. The situation now is more or lesslike this:

get net at abl e(a). __i ndex. deposit(a, 100.00)
The metatable of a isAccount and Account. i ndex isaso Account (because the new method
didsel f. i ndex = sel f). Therefore, we can rewrite the previous expression as

Account . deposit(a, 100.00)

That is, Luacallstheoriginal deposi t function, but passing a as the self parameter. So, the new
account a inherited thedeposi t function from Account . By the same mechanism, it can inherit all
fieldsfrom Account .

The inheritance works not only for methods, but also for other fields that are absent in the new account.
Therefore, a class provides not only methods, but also default values for itsinstance fields. Remember
that, in our first definition of Account , we provided afield bal ance with value 0. So, if we create a
new account without an initial balance, it will inherit this default value:

b = Account: new()
print (b. bal ance) -->0

When we call thedeposi t method on b, it runs the equivalent of
b. bal ance = b. bal ance + v

(becausesel f isb). Theexpression b. bal ance evauatesto zero and an initial deposit is assigned to
b. bal ance. The next time we ask for this value, the index metamethod is not invoked (because now b
hasitsown bal ance field).

Programming in Lua

Page 200 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 16. Object-Oriented Programming

16.2 - Inheritance

Because classes are objects, they can get methods from other classes, too. That makes inheritance (in the
usual object-oriented meaning) quite easy to implement in Lua.

Let us assume we have abase class like Account :

Account = {bal ance = 0}

function Account: new (0)
o =o0 or {}
set net at abl e(o, self)
self. index = self
return o

end

function Account:deposit (V)
sel f. bal ance = self. bal ance + v
end
function Account:w thdraw (v)
if v > self.balance then error"insufficient funds" end

sel f. bal ance = self. bal ance - v
end

From that class, we want to derive a subclass Speci al Account , which alows the customer to
withdraw more than his balance. We start with an empty class that ssimply inherits all its operations from
its base class:

Speci al Account = Account: new()
Up to now, Speci al Account isjust aninstance of Account . The nice thing happens now:

s = Speci al Account: new{lim t=1000. 00}

Speci al Account inheritsnewfrom Account like any other method. Thistime, however, when

Page 201 of 351

new executes, thesel f parameter will refer to Speci al Account . Therefore, the metatable of s will
be Speci al Account ,whosevalueatindex i ndex isalso Speci al Account . So, s inherits
from Speci al Account , which inheritsfrom Account . When we evaluate

s: deposi t (100. 00)

Luacannot find adeposi t fieldins, soitlooksinto Speci al Account ; it cannot find adeposi t
field there, too, so it looksinto Account and thereit finds the original implementation for a deposit.

What makes a Speci al Account specia isthat it can redefine any method inherited from its
superclass. All we have to do is to write the new method:

function Speci al Account:w t hdraw (V)
If v - self.balance >= self:getLimt() then
error"insufficient funds"
end
sel f. bal ance = self.balance - v
end

function Special Account:getLimt ()
return self.limt or O
end

Now, whenwecal s: wi t hdr aw(200. 00) , Luadoes not go to Account , because it finds the new
wi t hdr awmethod in Speci al Account first. Becauses. | i m t is1000.00 (remember that we set
thisfield when we created s), the program does the withdrawal, leaving s with a negative balance.

An interesting aspect of OO in Luaisthat you do not need to create a new class to specify anew
behavior. If only a single object needs a specific behavior, you can implement that directly in the object.
For instance, if the account s represents some special client whose limit is always 10% of her balance,
you can modify only this single account:

function s:getLimt ()
return self.balance * 0.10
end

After that declaration, thecall s: wi t hdr aw(200. 00) runsthew t hdr aw method from
Speci al Account , but when that method callssel f: get Li mi t, itisthislast definition that it
invokes.

Programming in Lua

Page 202 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 16. Object-Oriented Programming

16.3 - Multiple Inheritance

Because objects are not primitive in Lua, there are several ways to do object-oriented programming in
Lua. The method we saw previously, using the index metamethod, is probably the best combination of
simplicity, performance, and flexibility. Nevertheless, there are other implementations, which may be
more appropriate to some particular cases. Here we will see an alternative implementation that allows
multiple inheritance in Lua

The key for thisimplementation is the use of afunction for the metafield i ndex. Remember that,
when atable's metatable has afunction in thefield __ i ndex, Luawill call that function whenever it
cannot find akey in the original table. Then, __i ndex can look up for the missing key in how many
parents it wants.

Multiple inheritance means that a class may have more than one superclass. Therefore, we cannot use a
class method to create subclasses. Instead, we will define a specific function for that purpose,

cr eat ed ass, which has as arguments the superclasses of the new class. This function creates a table
to represent the new class, and sets its metatable with an i ndex metamethod that does the multiple
inheritance. Despite the multiple inheritance, each instance still belongs to one single class, where it
looks for all its methods. Therefore, the relationship between classes and superclassesis different from
the relationship between classes and instances. Particularly, a class cannot be the metatable for its
instances and its own metatable at the same time. In the following implementation, we keep a class as
the metatable for itsinstances and create another table to be the class metatable.

-- look up for "k' inlist of tables "plist"’
| ocal function search (k, plist)
for i=1, table.getn(plist) do
local v = plist[i][KkK] -- try "i'-th superclass
if v then return v end
end
end

function createC ass (...)
| ocal ¢ = {} -- new cl ass

-- class wll search for each nmethod in the list of its
-- parents (arg' is the |ist of parents)
setnetatable(c, {__index = function (t, k)

Page 203 of 351

return search(k, arg)
end})

-- prepare c' to be the netatable of its instances
C. index =c¢

-- define a new constructor for this new cl ass
function c:new (0)

o=o0 or {}

set net at abl e(o0, c¢)

return o
end

-- return new cl ass
return c
end

Let usillustrate the use of cr eat eCl ass with asmall example. Assume our previous class Account
and another class, Nanmed, with only two methods, set nane and get nane:

Naned = {}

functi on Naned: get nane ()
return sel f.nane

end

functi on Naned: set nane (n)
self.nane = n
end

To create anew class NamedAccount that isasubclass of both Account and Nanmed, we smply call
creat ed ass:

NanmedAccount = createC ass(Account, Naned)
To create and to use instances, we do as usual:

account = NanedAccount: new{nane = "Paul "}
print (account: getnane()) --> Paul

Now let us follow what happens in the last statement. Lua cannot find the field " get nane" in
account . So, it looksfor thefield i ndex of account 's metatable, whichis NanmedAccount .
But NanedAccount also cannot providea" get nane" field, so Lualooksfor thefield i ndex of

Page 204 of 351

NanedAccount 's metatable. Because this field contains afunction, Lua callsit. This function then
looksfor " get nane" firstinto Account , without success, and then into Nanmed, where it finds a non-
nil value, which isthe final result of the search.

Of course, due to the underlying complexity of this search, the performance of multiple inheritanceis
not the same as single inheritance. A ssmple way to improve this performance is to copy inherited
methods into the subclasses. Using this technique, the index metamethod for classes would be like this:

setnetatable(c, {__index = function (t, k)
| ocal v = search(k, arg)

t[k] = v -- save for next access
return v

end})
With this trick, accesses to inherited methods are as fast as to local methods (except for the first access).

The drawback is that it is difficult to change method definitions after the system is running, because
these changes do not propagate down the hierarchy chain.

Programming in Lua

Page 205 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 16. Object-Oriented Programming

16.4 - Privacy

Many people consider privacy to be an integral part of an object-oriented |language; the state of each
object should be its own internal affair. In some OO languages, such as C++ and Java, you can control
whether an object field (also called an instance variable) or amethod is visible outside the object. Other
languages, such as Smalltalk, make all variables private and al methods public. The first OO language,
Simula, did not offer any kind of protection.

The main design for objectsin Lua, which we have shown previously, does not offer privacy
mechanisms. Partly, thisis a consequence of our use of agenera structure (tables) to represent objects.
But this also reflects some basic design decisions behind Lua. Luais not intended for building huge
programs, where many programmers are involved for long periods. Quite the opposite, Luaaims at
small to medium programs, usually part of alarger system, typically developed by one or afew
programmers, or even by non programmers. Therefore, Lua avoids too much redundancy and artificial
restrictions. If you do not want to access something inside an object, just do not do it.

Nevertheless, another aim of Luaisto be flexible, offering to the programmer meta-mechanisms through
which she can emulate many different mechanisms. Although the basic design for objectsin Lua does
not offer privacy mechanisms, we can implement objectsin a different way, so asto have access control.
Although this implementation is not used frequently, it isinstructive to know about it, both because it
explores some interesting corners of Lua and because it can be a good solution for other problems.

The basic idea of this alternative design is to represent each object through two tables: one for its state;
another for its operations, or itsinterface. The object itself is accessed through the second table, that is,
through the operations that compose its interface. To avoid unauthorized access, the table that represents
the state of an object isnot kept in afield of the other table; instead, it is kept only in the closure of the
methods. For instance, to represent our bank account with this design, we could create new objects
running the following factory function:

functi on newAccount (initial Balance)
| ocal self = {balance = initial Bal ance}

| ocal withdraw = function (v)
sel f. bal ance = self.bal ance - v
end

| ocal deposit = function (V)

Page 206 of 351

sel f. bal ance = sel f.bal ance + v
end

| ocal getBal ance = function () return self.bal ance end

return {
wi t hdraw = wi t hdr aw,
deposit = deposit,
get Bal ance = get Bal ance

}

end

First, the function creates a table to keep the internal object state and storesit in the local variablesel f.
Then, the function creates closures (that is, instances of nested functions) for each of the methods of the
object. Finally, the function creates and returns the external object, which maps method names to the
actual method implementations. The key point here is that those methods do not get sel f as an extra
parameter; instead, they accesssel f directly. Because there is no extra argument, we do not use the
colon syntax to manipulate such objects. The methods are called just like any other function:

accl = newAccount (100. 00)
accl. wi t hdraw 40. 00)
print (accl. get Bal ance()) --> 60

This design gives full privacy to anything stored inthesel f table. After newAccount returns, thereis
no way to gain direct access to that table. We can only access it through the functions created inside
newAccount . Although our example puts only one instance variable into the private table, we can
store al private parts of an object in that table. We can also define private methods: They are like public
methods, but we do not put them in the interface. For instance, our accounts may give an extra credit of
10% for users with balances above a certain limit, but we do not want the users to have access to the
details of this computation. We can implement this as follows:

functi on newAccount (initial Balance)
| ocal self = {
bal ance = initial Bal ance,
LI M = 10000. 00,

}

| ocal extra = function ()
I f self.balance > self.LIMthen
return sel f.bal ance*0. 10
el se
return O
end

Page 207 of 351

end
| ocal getBal ance = function ()

return self.bal ance + self.extra()
end

Again, thereis no way for any user to accessthe ext r a function directly.

Programming in Lua

Page 208 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 16. Object-Oriented Programming

16.5 - The Single-Method Approach

A particular case of the previous approach for OO programming occurs when an object has a single
method. In such cases, we do not need to create an interface table; instead, we can return this single
method as the object representation. If this sounds alittle weird, it is worth remembering Section 7.1,
where we saw how to construct iterator functions that keep state as closures. An iterator that keeps state
Is nothing more than a single-method object.

Another interesting case of single-method objects occurs when this single-method is actually a dispatch
method that performs different tasks based on a distinguished argument. A possible implementation for
such object is asfollows:

function newObj ect (val ue)
return function (action, v)

I f action == "get" then return val ue
el seif action == "set" then value = v
el se error("invalid action")
end

end

end
Its use is straightforward:

d = newQbj ect (0)

print(d("get")) -->0
d("set", 10)
print(d("get")) --> 10

This unconventional implementation for objectsis quite effective. The syntax d(" set ", 10) , although
peculiar, is only two characters longer than the more conventional d: set (10) . Each object uses one
single closure, which is cheaper than one table. There is no inheritance, but we have full privacy: The
only way to access an object state is through its sole method.

Tcl/Tk uses asimilar approach for its widgets. The name of awidget in Tk denotes a function (a widget
command) that can perform all kinds of operations over the widget.

Page 209 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 17. Weak Tables

17 - Weak Tables

L ua does automatic memory management. A program only creates objects (tables, functions, etc.); there
is no function to delete objects. Lua automatically deletes objects that become garbage, using garbage
collection. That frees you from most of the burden of memory management and, more important, frees
you from most of the bugs related to that activity, such as dangling pointers and memory leaks.

Unlike some other collectors, Lua's garbage collector has no problems with cycles. Y ou do not need to
take any special action when using cyclic data structures; they are collected like any other data.
Neverthel ess, sometimes even the smarter collector needs your help. No garbage collector allows you to
forget all worries about memory management.

A garbage collector can collect only what it can be sure is garbage; it cannot know what you consider
garbage. A typical exampleis a stack, implemented with an array and an index to the top. Y ou know that
the valid part of the array goes only up to the top, but Lua does not. If you pop an element by simply
decrementing the top, the object left in the array is not garbage for Lua. Similarly, any object stored in a
global variableis not garbage for Lua, even if your program will never use it again. In both cases, itis
up to you (i.e., your program) to assign nil to these positions so that they do not lock an otherwise free
object.

However, simply cleaning your references is not always enough. Some constructions need extra
collaboration between you and the collector. A typical example happens when you want to keep a
collection of al live objects of some kind (e.g., files) in your program. That seems a simple task: All you
have to do isto insert each new object into the collection. However, once the object isinside the
collection, it will never be collected! Even if no one else pointsto it, the collection does. L ua cannot
know that this reference should not prevent the reclamation of the object, unless you tell Lua about that.

Weak tables are the mechanism that you use to tell Luathat a reference should not prevent the
reclamation of an object. A weak reference is areference to an object that is not considered by the
garbage collector. If al references pointing to an object are weak, the object is collected and somehow
these weak references are deleted. Luaimplements weak references as weak tables. A weak tableisa
table where all references are weak. That means that, if an object is only held inside weak tables, Lua
will collect the object eventually.

Tables have keys and values and both may contain any kind of object. Under normal circumstances, the
garbage collector does not collect objects that appear as keys or as values of an accessibletable. That is,

Page 210 of 351

both keys and values are strong references, as they prevent the reclamation of objects to which they
refer. In aweak table, keys and values may be weak. That means that there are three kinds of weak
tables: tables with weak keys, tables with weak values, and fully weak tables, where both keys and
values are weak. Irrespective of the table kind, when akey or avalue is collected the whole entry
disappears from the table.

The weakness of atableisgiven by thefield __node of its metatable. The value of thisfield, when
present, should be a string: If the string contains the letter "k~ (lower case), the keysin the table are
weak; if the string contains the letter 'v” (lower case), the values in the table are weak. The following
example, athough artificial, illustrates the basic behavior of weak tables:

a = {}
b = {}
set net at abl e(a, b)
b. node = "k" -- now " a' has weak keys
key = {} -- creates first key
al key] =1
key = {} -- creates second key
al key] = 2
col | ect gar bage() -- forces a garbage collection cycle
for k, vin pairs(a) do print(v) end
--> 2

In this example, the second assignment key = {} overwritesthefirst key. When the collector runs,
there is no other reference to the first key, so it is collected and the corresponding entry in the tableis
removed. The second key, however, is still anchored in variable key, so it is not collected.

Notice that only objects can be collected from aweak table. Vaues, such as numbers and booleans, are
not collectible. For instance, if we insert anumeric key in table a (from our previous example), it will
never be removed by the collector. Of course, if the value corresponding to a numeric key is collected,
then the whole entry is removed from the weak table.

Strings present a subtlety here: Although strings are collectible, from an implementation point of view,
they are not like other collectible objects. Other objects, such as tables and functions, are created
explicitly. For instance, whenever Luaevaluates{ } , it creates a new table. Whenever it evaluates
function () ... end,itcreatesanew function (aclosure, actualy). However, does Lua create a
new string when it evaluates" a" . . " b" ?What if thereisaready astring " ab" in the system? Does

L ua create a new one? Can the compiler create that string before running the program? It does not
matter: These are implementation details. Thus, from the programmer's point of view, strings are values,
not objects. Therefore, like a number or a boolean, a string is not removed from weak tables (unlessits
associated value is collected).

Page 211 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 17. Weak Tables

17.1 - Memoize Functions

A common programming technique is to trade space for time. Y ou can speed up some functions by
memoizing their results so that, later, when you call the function with the same arguments, it can reuse
the resullt.

Imagine a generic server that receives requests containing strings with Lua code. Each timeit getsa
request, it runs| oadst ri ng on the string, and then calls the resulting function. However,

| oadst ri ng isan expensive function and some commands to the server may be quite frequent.
Instead of calling | oadst ri ng over and over each time it receives a common command like

"cl oseconnection() ", the server can memoize theresultsfrom| oadst ri ng using an auxiliary
table. Before calling | oadst ri ng, the server checksin the table whether that string already has a
trandation. If it cannot find the string, then (and only then) the server calls| oadst r i ng and stores the
result into the table. We can pack this behavior in a new function:

| ocal results = {}
function nmem| oadstring (s)

I f results[s] then -- result avail abl e?
return results|s] -- reuse it

el se
| ocal res = | oadstring(s) -- conpute new result
results[s] = res -- save for later reuse
return res

end

end

The savings with this scheme can be huge. However, it may also cause unsuspected wastes. Although
some commands repeat over and over, many other commands happen only once. Gradually, the table
resul t s accumulates all commands the server has ever received plus their respective codes; after
enough time, thiswill exhaust the server's memory. A weak table provides a ssmple solution to this
problem. If ther esul t s table has weak values, each garbage-collection cycle will remove all
trandlations not in use at that moment (which means virtually all of them):

| ocal results = {}

setnetatable(results, { _ node = "v"}) -- make val ues weak
function nmem| oadstring (s)
-- as before

Page 212 of 351

Actually, because the indices are always strings, we can make that table fully weak, if we want:
setnetatable(results, { node = "kv"})
The net result is exactly the same.

The memoize technique is also useful to ensure the uniqueness of some kind of object. For instance,
assume a system that represents colors as tables, with fieldsr ed, gr een, and bl ue in somerange. A
naive color factory generates a new color for each new request:

function createR@G (r, g, b)
return {red = r, green = g, blue = b}
end

Using the memoize technique, we can reuse the same table for the same color. To create a unique key
for each color, we simply concatenate the color indices with a separator in between:

| ocal results = {}

setnetatable(results, { node = "v"}) -- nake val ues weak
function createR@ (r, g, b)

| ocal key =r .. "-" ... g.. "-" .. Db

I f results[key] then return results[key]

el se

| ocal newcolor = {red =r, green = g, blue = b}
resul ts[key] = newcol or
return newcol or
end
end

An interesting consequence of this implementation is that the user can compare colors using the
primitive equality operator, because two coexistent equal colors are always represented by the same
table. Note that the same color may be represented by different tables at different times, because from
time to time a garbage-collector cycle clearsther esul t s table. However, aslong asagiven color isin
use, it isnot removed fromr esul t s. So, whenever a color survives long enough to be compared with
anew one, its representation also survives long enough to be reused by the new color.

Programming in Lua

Page 213 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 17. Weak Tables

17.2 - Object Attributes

Another important use of weak tables is to associate attributes with objects. There are endless situations
where we need to attach some attribute to an object: names to functions, default values to tables, sizesto
arrays, and so on.

When the object is atable, we can store the attribute in the table itself, with an appropriate unique key.
Aswe saw before, asimple and error-proof way to create a unique key isto create a new object
(typically atable) and use it as key. However, if the object is not atable, it cannot keep its own
attributes. Even for tables, sometimes we may not want to store the attribute in the original object. For
instance, we may want to keep the attribute private, or we do not want the attribute to disturb atable
traversal. In all these cases, we need an alternative way to associate attributes to objects. Of course, an
external table provides an ideal way to associate attributes to objects (it is not by chance that tables are
sometimes called associative arrays). We use the objects as keys, and their attributes as values. An
external table can keep attributes of any type of object (as Luaallows usto use any type of object asa
key). Moreover, attributes kept in an external table do not interfere with other objects and can be as
private as the table itself.

However, this seemingly perfect solution has a huge drawback: Once we use an object asakey ina
table, we lock the object into existence. Lua cannot collect an object that is being used as akey. If we
use aregular table to associate functions to its names, none of those functions will ever be collected. As
you might expect, we can avoid this drawback by using aweak table. Thistime, however, we need weak
keys. The use of weak keys does not prevent any key from being collected, once there are no other
references to it. On the other hand, the table cannot have weak values; otherwise, attributes of live
objects could be collected.

Luaitself uses thistechnique to keep the size of tables used as arrays. As we will see later, the table
library offers afunction to set the size of an array and another to get this size. When you set the size of
an array, Luastoresthis size in a private weak table, where the index isthe array itself and the valueis
itssize.

Programming in Lua

Page 214 of 351

Programming in Lua

Part |1. Tables and Objects Chapter 17. Weak Tables

17.3 - Revisiting Tables with Default Values

In Section 13.4.3, we discussed how to implement tables with non-nil default values. We saw one

particular technique and commented that two other techniques need weak tables so we postponed them.
Now it istimeto revisit the subject. Aswe will see, those two techniques for default values are actually
particular applications of the two general techniques that we have seen here: object attributes and

memoizing.

In the first solution, we use aweak table to associate to each table its default value:

| ocal defaults = {}
set net at abl e(defaults, { node = "k"})
local m = { index = function (t) return defaults[t] end}
function setDefault (t, d)
defaults[t] =d
setnetatable(t, nt)
end

If def aul t s had not weak keys, it would anchor all tables with default values into permanent
existence.

In the second solution, we use distinct metatables for distinct default values, but we reuse the same
metatable whenever we repeat a default value. Thisisatypical use of memoizing:

| ocal netas = {}
set net at abl e(netas, {__node = "v"})
function setDefault (t, d)

| ocal mt = netas|[d]

If m == nil then
nm ={_ index = function () return d end}
netas[d] = m -- nmenoi ze
end
setnetatable(t, nt)
end

We use weak values, in this case, to allow the collection of metatables that are not being used anymore.

Page 215 of 351

Given these two implementations for default values, which is best? As usual, it depends. Both have
similar complexity and similar performance. The first implementation needs a few words for each table
with a default value (an entry in def aul t s). The second implementation needs a few dozen words for
each distinct default value (a new table, a new closure, plusan entry in et as). So, if your application
has thousands of tables with afew distinct default values, the second implementation is clearly superior.
On the other hand, if few tables share common defaults, then you should use the first one.

Programming in Lua

Page 216 of 351

Programming in Lua

Part I111. The Standard Libraries Chapter 18. The Mathematical Library

18 - The Mathematical Library

In this chapter (and in the other chapters about the standard libraries), my purpose is not to give the
complete specification of each function, but to show you what kind of functionality the library can
provide. | may omit some subtle options or behaviors for clarity of exposition. The main ideaisto spark
your curiosity, which can then be satisfied by the reference manual.

The mat h library comprises a standard set of mathematical functions, such as trigonometric functions
(si n,cos,tan,asin,acos, etc.), exponentiation and logarithms (exp, | og, | 0g10), rounding
functions (f | oor, cei |), max, m n, plusavariable pi . The mathematical library aso definesthe
operator " to work as the exponentiation operator.

All trigonometric functions work in radians. (Until Lua 4.0, they worked in degrees.) Y ou can use the
functionsdeg and r ad to convert between degrees and radians. If you want to work in degrees, you can
redefine the trigonometric functions:

| ocal sin, asin, ... = math.sin, math.asin,

| ocal deg, rad = math.deg, math.rad

mat h.sin = function (x) return sin(rad(x)) end
mat h. asin = function (x) return deg(asin(x)) end

The mat h. r andomfunction generates pseudo-random numbers. We can call it in three ways. When
we call it without arguments, it returns a pseudo-random real number with uniform distribution in the
interval [0,1). When we call it with only one argument, an integer n, it returns an integer pseudo-random
number x such that 1 <= x <= n. For instance, you can simulate the result of adiewithr andon(6) .
Finally, we can call r andomwith two integer arguments, | and u, to get a pseudo-random integer x such
that | <= x<=u.

Y ou can set a seed for the pseudo-random generator with ther andonseed function; its only numeric
argument is the seed. Usually, when a program starts, it initializes the generator with afixed seed. That
means that, every time you run your program, it generates the same sequence of pseudo-random
numbers. For debugging, that is a nice property; but in agame, you will have the same scenario over and
over. A common trick to solve this problem is to use the current time as a seed:

mat h. randonseed(os.tinme())

Page 217 of 351

(Theos. ti nme function returns a number that represents the current time, usually as the number of
seconds since some epoch.)

Programming in Lua

Page 218 of 351

Programming in Lua

Part I111. The Standard Libraries Chapter 19. The Table Library

19 - The Table Library

Thet abl e library comprises auxiliary functions to manipulate tables as arrays. One of itsmain rolesis
to give areasonable meaning for the size of an array in Lua. It also provides functionsto insert and
remove elements from lists and to sort the elements of an array.

Programming in Lua

Page 219 of 351

Programming in Lua

Part I111. The Standard Libraries Chapter 19. The Table Library

19.1 - Array Size

Frequently, in Lua, we assume that an array ends just before itsfirst nil element. This convention has
one drawback: We cannot have anil inside an array. For several applications thisrestriction isnot a
hindrance, such as when all elementsin the array have afixed type. But sometimes we must allow nils
inside an array. In such cases, we need a method to keep an explicit size for an array.

The table library defines two functions to manipulate array sizes: get n, which returns the size of an
array, and set n, which setsthe size of an array. Aswe saw earlier, there are two methods to associate
an attribute to a table: Either we store the attribute in afield of the table, or we use a separate (weak)
table to do the association. Both methods have pros and cons; for that reason, thet abl e library uses
both.

Usualy, acal t abl e. set n(t, n) associatest withn inaninternal (weak) tableand acall t abl e.
get n(t) retrievesthe value associated with t in that internal table. However, if thetablet hasafield

“n" with anumeric value, set n updatesthisvalue and get n returnsit. The get n function still hasa

last option: If it cannot get an array size with any of those options, it uses the naive approach: to traverse
the array looking for itsfirst nil element. So, you can awaysuset abl e. get n(t) inanarray and get

areasonable result. See the examples:

print(table.getn{10, 2, 4}) --> 3
print(table.getn{10,2,nil}) --> 2
print(table.getn{10,2,nil; n=3}) --> 3
print(table.getn{n=1000}) --> 1000
a = {}

print(table.getn(a)) -->0

t abl e. setn(a, 10000)

print(table.getn(a)) --> 10000
a = {n=10}

print(table.getn(a)) --> 10

t abl e. setn(a, 10000)

print(table.getn(a)) --> 10000

By default, set n and get n usethe internal table to store asize. Thisisthe cleanest option, asit does
not pollute the array with an extra element. However, the n-field option has some advantages too. The

Page 220 of 351

L ua core uses this option to set the size of the ar g array, in functions with variable number of
arguments; because the core cannot depend on alibrary, it cannot use set n. Another advantage of this
option isthat we can set the size of an array directly in its constructor, as we saw in the examples.

It isagood practice to use both set n and get n to manipulate array sizes, even when you know that the
sizeisat field n. All functionsfromthet abl e library (sort,concat,i nsert, etc.) follow this
practice. Actually, the possibility of set n to change the value of the field n is provided only for
compatibility with older versions of Lua. This behavior may change in future versions of the language.
To play safe, do not assume this behavior. Always use get n to get asize set by set n.

Programming in Lua

Page 221 of 351

Programming in Lua

Part I111. The Standard Libraries Chapter 19. The Table Library

19.2 - Insert and Remove

Thet abl e library provides functionsto insert and to remove elements from arbitrary positions of alist.
Thet abl e. i nsert function inserts an element in a given position of an array, moving up other
elements to open space. Moreover, i nsert increments the size of the array (using set n). For instance,
if aisthearray { 10, 20, 30}, afterthecaltable.insert(a, 1, 15) awillbe{15, 10,
20, 30}.Asaspecia (and frequent) case, if wecall i nsert without a position, it inserts the element
in the last position of the array (and, therefore, moves no elements). As an example, the following code
reads the program input line by line, storing all linesin an array:

a = {}
for line inio.lines() do
table.insert(a, |ine)
end
print(table.getn(a)) --> (nunber of lines read)

Thet abl e. r enove function removes (and returns) an element from a given position in an array,
moving down other elements to close space and decrementing the size of the array. When called without
aposition, it removes the last element of the array.

With those two functions, it is straightforward to implement stacks, queues, and double queues. We can
initialize such structuresasa = {}. A push operationisequivalenttot abl e. i nsert(a, x);a
pop operation isequivalenttot abl e. renove(a) . Toinsert at the other end of the structure we use
table.insert(a, 1, x);toremovefromthatendweuset abl e.renove(a, 1).Thelast
two operations are not particularly efficient, as they must move elements up and down. However,
because thet abl e library implements these functionsin C, these loops are not too expensive and this
implementation is good enough for small arrays (up to some hundred elements, say).

Programming in Lua

Page 222 of 351

Programming in Lua

Part I111. The Standard Libraries Chapter 19. The Table Library

19.3 - Sort

Another useful function on arraysist abl e. sor t , which we have seen before. It receives the array to
be sorted, plus an optional order function. This order function receives two arguments and must return
trueif the first argument should come first in the sorted array. If this function is not provided, sort uses
the default less-than operation (corresponding to the "<” operator).

A common mistake isto try to order the indices of atable. In atable, the indices form a set, and have no
order whatsoever. If you want to order them, you have to copy them to an array and then sort the array.
L et us see an example. Suppose that you read a source file and build a table that gives, for each function
name, the line where that function is defined; something like this:

lines = {
| uaH set = 10,
| uaH get = 24,
| uaH present = 48,

}

Now you want to print these function namesin alphabetical order. If you traverse thistable with pai r s,
the names appear in an arbitrary order. However, you cannot sort them directly, because these names are
keys of the table. However, when you put these names into an array, then you can sort them. First, you
must create an array with those names, then sort it, and finally print the result:

a = {}
for nin pairs(lines) do table.insert(a, n) end
tabl e. sort(a)

for i,nin ipairs(a) do print(n) end

Note that, for Lua, arrays aso have no order. But we know how to count, so we get ordered values as
long as we access the array with ordered indices. That is why you should always traverse arrays with

| pai r s, rather than pai r s. Thefirst imposesthe key order 1, 2, ..., whereas the latter uses the natural
arbitrary order of the table.

As amore advanced solution, we can write an iterator that traverses atable following the order of its
keys. An optional parameter f allows the specification of an alternative order. It first sorts the keysinto
an array, and then iterates on the array. At each step, it returns the key and value from the original table:

Page 223 of 351

function pairsByKeys (t, f)
| ocal a = {}
for nin pairs(t) do table.insert(a, n) end
table.sort(a, f)

local i =0 -- iterator variable

| ocal iter = function () -- iterator function
=i + 1
if a[i] == nil then return nil
else return a[i], t[a[i]]
end

end

return iter

end

With thisfunction, it is easy to print those function names in alphabetical order. The loop

for nane, line in pairsByKeys(lines) do
print(nanme, |ine)
end
will print
| uaH _get 24
| uaH _present 48
| uaH set 10

Programming in Lua

Page 224 of 351

Programming in Lua

Part 111. The Standard Libraries Chapter 20. The String Library

20 - The String Library

The power of araw Luainterpreter to manipulate stringsis quite limited. A program can create string
literals and concatenate them. But it cannot extract a substring, check its size, or examine its contents.
The full power to manipulate strings in Lua comes from its string library.

Some functionsin the string library are quite simple: st ri ng. | en('s) returnsthe length of astring s.
string.rep(s, n) returnsthestrings repeated n times. Y ou can create a string with 1M bytes (for
tests, for instance) withstri ng. rep("a", 2720).string.| ower(s) returnsacopy of s with
the upper-case letters converted to lower case; all other charactersin the string are not changed
(string. upper convertsto upper case). Asatypical use, if you want to sort an array of strings
regardless of case, you may write something like

tabl e.sort(a, function (a, b)
return string.lower(a) < string.|ower(b)
end)

Bothstri ng. upper andstri ng. | ower follow the current locale. Therefore, if you work with the
European Latin-1 locale, the expression

string. upper ("acao")
resultsin" ACAQ' .

Thecal string. sub(s,i,)) extractsapieceof thestring s, from thei -th to thej -th character
inclusive. In Lua, the first character of astring hasindex 1. Y ou can also use negative indices, which
count from the end of the string: The index -1 refersto the last character in astring, -2 to the previous
one, and so on. Therefore, thecall st ri ng. sub(s, 1, j) getsaprefix of the string s with length
j;string.sub(s, j, -1) getsasuffixof the string, starting at the j -th character (if you do not
provide athird argument, it defaultsto -1, so we could writethelast cal asstri ng. sub(s, j));
andstring. sub(s, 2, -2) returnsacopy of thestring s with thefirst and last characters
removed:

s = "[in brackets]"
print(string.sub(s, 2, -2)) --> in brackets

Page 225 of 351

Remember that stringsin Luaare immutable. Thest r i ng. sub function, like any other functionin
L ua, does not change the value of a string, but returns a new string. A common mistake isto write
something like

string.sub(s, 2, -2)

and to assume that the value of s will be modified. If you want to modify the value of avariable, you
must assign the new value to the variable:

s = string.sub(s, 2, -2)

Thestring. char andstri ng. byt e functions convert between characters and their internal
numeric representations. The function st ri ng. char gets zero or more integers, converts each one to
acharacter, and returns a string concatenating all those characters. The functionst ri ng. byt e(s,

|) returnsthe internal numeric representation of thei -th character of the string s; the second argument
iIsoptional, sothat acall stri ng. byt e(s) returnsthe internal numeric representation of the first (or
single) character of s. In the following examples, we assume that characters are represented in ASCII:

print(string.char(97)) --> a
I = 99; print(string.char(i, i+1, i+2)) --> cde
print(string. byte("abc")) --> 97
print(string. byte("abc", 2)) --> 08
print(string. byte("abc", -1)) --> 99

In the last line, we used a negative index to access the last character of the string.

Thefunctionst ri ng. f or mat isapowerful tool when formatting strings, typically for output. It
returns a formatted version of its variable number of arguments following the description given by its
first argument, the so-called format string. The format string has rules similar to those of thepr i nt f
function of standard C: It is composed of regular text and directives, which control where and how each
argument must be placed in the formatted string. A ssmple directive isthe character "% plus aletter that
tells how to format the argument: "d” for a decimal number, "X~ for hexadecimal, "o” for octal, 'f “ for a
floating-point number, "s” for strings, plus other variants. Between the "% and the |etter, adirective can
include other options, which control the details of the format, such as the number of decimal digits of a
floating-point number:

print(string.format("pi = %4f", Pl)) --> pi = 3.1416
d =5 m=11; y = 1990
print(string.formt("%2d/ %2d/ %94d", d, m vy))

--> 05/11/1990
tag, title = "h1", "a title"
print(string.format("<%>%</%>", tag, title, tag))

Page 226 of 351

--> <hl>a title</hl>

In the first example, the % 4f means afloating-point number with four digits after the decimal point. In
the second example, the %92d means a decimal number ("d”), with at least two digits and zero padding;
the directive 9%2d, without the zero, would use blanks for padding. For a complete description of those
directives, see the Lua reference manual. Or, better yet, see a C manual, as Luacalls the standard C

libraries to do the hard work here.

Programming in Lua

Page 227 of 351

Programming in Lua

Part 111. The Standard Libraries Chapter 20. The String Library

20.1 - Pattern-Matching Functions

The most powerful functionsin the string library arest ri ng. fi nd (string Find), st ri ng. gsub
(Global Substitution), and st ri ng. gf i nd (Global Find). They all are based on patterns.

Unlike several other scripting languages, Lua does not use POSIX regular expressions (regexp) for
pattern matching. The main reason for thisis size: A typical implementation of POSIX regexp takes
more than 4,000 lines of code. Thisis bigger than all Lua standard libraries together. In comparison, the
implementation of pattern matching in Lua has less than 500 lines. Of course, the pattern matching in
Lua cannot do all that afull POSIX implementation does. Nevertheless, pattern matching in Luaisa
powerful tool and includes some features that are difficult to match with standard POSIX
implementations.

Thebasicuseof st ri ng. fi nd isto search for a pattern inside a given string, called the subject string.
The function returns the position where it found the pattern or nil if it could not find it. The simplest
form of apattern is aword, which matches only a copy of itself. For instance, the pattern 'hel | o' will
search for the substring " hel | 0" inside the subject string. When f i nd finds its pattern, it returns two
values: the index where the match begins and the index where the match ends.

s = "hello world"

i,] =string.find(s, "hello")

print(i, j) -->1 5
print(string.sub(s, i, j)) --> hello
print(string.find(s, "world")) --> 7 11
I,] =string.find(s, "I")

print(i, j) --> 3 3
print(string.find(s, "I11")) -->nil

When amatch succeeds, ast ri ng. sub of thevaluesreturned by st ri ng. f i nd would return the
part of the subject string that matched the pattern. (For simple patterns, thisis the pattern itself.)

Thestring. fi nd function has an optional third parameter: an index that tells where in the subject
string to start the search. This parameter is useful when we want to process all the indices where agiven
pattern appears. We search for a new pattern repeatedly, each time starting after the position where we
found the previous one. As an example, the following code makes a table with the positions of all
newlinesin astring:

Page 228 of 351

| ocal t = {} -- table to store the indices
local i =0

while true do
I = string.find(s, "\n", i+1) -- find '"next' newine
if 1 == nil then break end
table.insert(t, i)

end

We will see later asimpler way to write such loops, using the st ri ng. gf i nd iterator.

Thest ri ng. gsub function has three parameters: a subject string, a pattern, and a replacement string.
Its basic use is to substitute the replacement string for all occurrences of the pattern inside the subject
string:

S = string.gsub("Lua is cute", "cute", "great")
print(s) --> Lua i s great

s = string.gsub("all Tit", "I", "x")

print(s) --> axx Xii

S = string.gsub("Lua is great", "perl", "tcl")
print(s) --> Lua i s great

An optional fourth parameter limits the number of substitutions to be made:

s = string.gsub("all lii", "I'", "x", 1)
print(s) --> ax| i
s = string.gsub("all lii", "I", "x", 2)
print(s) --> axx lii

Thest ri ng. gsub function also returns as a second result the number of times it made the
substitution. For instance, an easy way to count the number of spacesin astringis

_, count = string.gsub(str, " ", " ")

(Remember, the _ isjust adummy variable name.)

Programming in Lua

Page 229 of 351

Programming in Lua

Part 111. The Standard Libraries Chapter 20. The String Library

20.2 - Patterns

Y ou can make patterns more useful with character classes. A character classis an item in a pattern that
can match any character in a specific set. For instance, the class %@l matches any digit. Therefore, you
can search for adate in the format dd/ nm1 yyyy with the pattern ‘% %/ %%/ % %6 Y %d "

s = "Deadline is 30/05/1999, firnt
date = " %%/ %%/ Ya % %a%d"”
print(string.sub(s, string.find(s, date))) --> 30/ 05/ 1999

The following table lists all character classes:

all characters

% |letters

% |control characters
% |digits

% |lower case letters

%p |punctuation characters

%s |space characters

% |upper case letters

% |al phanumeric characters
% |hexadecimal digits
% |the character with representation O

An upper case version of any of those classes represents the complement of the class. For instance, 'Y&A'
represents all non-letter characters:

print(string.gsub("hello, up-down!", "O0A", "."))
--> hell o..up.down. 4

(The 4 isnot part of the result string. It is the second result of gsub, the total number of substitutions.
Other examples that print the result of gsub will omit this count.)

Page 230 of 351

Some characters, called magic characters, have special meanings when used in a pattern. The magic
characters are

() . %+-*2["8

The character "% works as an escape for those magic characters. So, '% ' matches a dot; ‘%86 matches
the character "% itself. Y ou can use the escape "% not only for the magic characters, but also for all
other non-alphanumeric characters. When in doubt, play safe and put an escape.

For Lua, patterns are regular strings. They have no special treatment and follow the same rules as other
strings. Only inside the functions are they interpreted as patterns and only then does the "% work as an
escape. Therefore, if you need to put a quote inside a pattern, you must use the same techniques that you
use to put a quote inside other strings; for instance, you can escape the quote with a "\ *, whichisthe
escape character for Lua.

A char-set allows you to create your own character classes, combining different classes and single
characters between square brackets. For instance, the char-set '[%w _] ' matches both al phanumeric
characters and underscores, the char-set '[01] ' matches binary digits, and the char-set [% %4]
matches sgquare brackets. To count the number of vowelsin atext, you can write

_, nvow = string.gsub(text, "[AElI QUaeiou]", "")

Y ou can also include character rangesin a char-set, by writing the first and the last characters of the
range separated by a hyphen. Y ou will seldom need this facility, because most useful ranges are aready
predefined; for instance, '[0- 9] ' issimpler when written as'%d’, '[0- 9a- f A- F] 'isthe same as '%x .
However, if you need to find an octal digit, then you may prefer '[0- 7] ', instead of an explicit
enumeration (' 01234567]). Y ou can get the complement of a char-set by starting it with 2" '[~0-
7] ' finds any character that is not an octal digit and '[*\ n] ' matches any character different from
newline. But remember that you can negate simple classes with its upper case version: '¥%&' issimpler
than'["¥s] .

Character classes follow the current locale set for Lua. Therefore, the class'[a- z] ' can be different
from'% '. In aproper locale, the latter form includes letters such as '¢” and "a". Y ou should aways use
the latter form, unless you have a strong reason to do otherwise: It is simpler, more portable, and dightly
more efficient.

Y ou can make patterns still more useful with modifiers for repetitions and optional parts. Patternsin Lua
offer four modifiers:

|: 1 or more repetitions

F 0 or more repetitions

Page 231 of 351

F also 0 or more repetitions

E optional (0 or 1 occurrence)

The "+ modifier matches one or more characters of the original class. It will aways get the longest
sequence that matches the pattern. For instance, the pattern '%a+' means one or more |etters, or aword:

print(string.gsub("one, and two; and three", "%a+", "word"))
--> word, word word; word word

The pattern '%agl+' matches one or more digits (an integer):

i,] = string.find("the nunber 1298 is even", "%l+")
print(i,j) --> 12 15

The modifier **“ issimilar to "+, but it also accepts zero occurrences of characters of the class. A
typical useisto match optional spaces between parts of a pattern. For instance, to match an empty
parenthesis pair, suchas() or (), you usethe pattern'%{ ¥%s* %) '. (The pattern '%s* ' matches zero or
more spaces. Parentheses have a special meaning in a pattern, so we must escape them with a "%.) As
another example, the pattern'[_%a] [%] * ' matchesidentifiers in a Lua program: a sequence that
starts with aletter or an underscore, followed by zero or more underscores or al phanumeric characters.

Like * ", the modifier -~ a'so matches zero or more occurrences of characters of the original class.
However, instead of matching the longest sequence, it matches the shortest one. Sometimes, thereis no
difference between **“ or - *, but usually they present rather different results. For instance, if you try to
find an identifier with the pattern [_%&] [_ %] - ', you will find only the first letter, becausethe'[_ %
w] - ' will always match the empty sequence. On the other hand, suppose you want to find commentsin a
C program. Many people would firsttry '/ 9% . *9/ ' (that is,a" / *" followed by a sequence of any
charactersfollowed by " */ " , written with the appropriate escapes). However, because the'. * ' expands
asfar asit can, thefirst"/ *" inthe program would close only with thelast " */ " :

test = "int x; /* x */ inty; [* vy *"
print(string.gsub(test, "/9%.*%/", "<COWENT>"))
--> int x; <COMMENT>

The pattern'. - ', instead, will expand the least amount necessary to find thefirst" */ ", so that you get
your desired result:

test = "int x; /* x */ inty; [*y*"

print(string.gsub(test, "/9%.-9%/", "<COVWENT>"))
-->int x; <COWENT> int y; <COWENT>

Page 232 of 351

The last modifier, "?”, matches an optional character. As an example, suppose we want to find an integer
in atext, where the number may contain an optional sign. The pattern [+-] ?%a+' does the job,
matching numeralslike” - 12" ," 23" and" +1009" . The [+-] ' isacharacter class that matches both
a + ora - ggn; thefollowing "?” makesthat sign optional.

Unlike some other systems, in Luaamodifier can only be applied to a character class; there is no way to
group patterns under a modifier. For instance, there is no pattern that matches an optional word (unless
the word has only one letter). Usually you can circumvent this limitation using some of the advanced
techniques that we will see later.

If apattern beginswith a ", it will match only at the beginning of the subject string. Similarly, if it

endswitha $’, it will match only at the end of the subject string. These marks can be used both to
restrict the patterns that you find and to anchor patterns. For instance, the test

I f string.find(s, ""%l") then ...
checks whether the string s starts with a digit and the test
if string.find(s, ""[+-]?%+$") then ...
checks whether that string represents an integer number, without other leading or trailing characters.

Another item in a pattern isthe '%b’, that matches balanced strings. Such item iswritten as '%oxy’,
where x and y are any two distinct characters; the x acts as an opening character and the y as the closing
one. For instance, the pattern '%o() ' matches parts of the string that start with a *(~ and finish at the
respective °) "

print(string.gsub("a (enclosed (in) parentheses) |ine",

()", ")

-->a l|line

Typicaly, this patternisused as'%b() ', '%d[] ', 'Y0% % ', or '%<>', but you can use any characters as
delimiters.

Programming in Lua

Page 233 of 351

Programming in Lua

Part 111. The Standard Libraries Chapter 20. The String Library

20.3 - Captures

The capture mechanism allows a pattern to yank parts of the subject string that match parts of the
pattern, for further use. Y ou specify a capture by writing the parts of the pattern that you want to capture
between parentheses.

When you specify capturesto st ri ng. fi nd, it returns the captured values as extra results from the
call. A typical use of thisfacility isto break a string into parts:

pair = "nane = Anna"
., _, key, value = string.find(pair, "(%+)%*=%*(%+)")
print(key, value) --> nane Anna

The pattern '%a+"' specifies a non-empty sequence of |etters; the pattern '%s* ' specifies a possibly empty
sequence of spaces. S0, in the example above, the whole pattern specifies a sequence of letters, followed
by a sequence of spaces, followed by =", again followed by spaces plus another sequence of |etters.
Both sequences of |etters have their patterns enclosed by parentheses, so that they will be captured if a
match occurs. Thef i nd function always returns first the indices where the matching happened (which
we store in the dummy variable _ in the previous example) and then the captures made during the
pattern matching. Below isasimilar example:

date = "17/7/1990"
, , d, m vy =string.find(date, "(%+)/(%+)/ (%d+)")
print(d, m y) -->17 7 1990

We can also use capturesin the pattern itself. In a pattern, an item like '%d’, where d isa single digit,
matches only a copy of the d-th capture. Asatypical use, suppose you want to find, inside a string, a
substring enclosed between single or double quotes. You could try apatternsuchas[""].-[""']",
that is, a quote followed by anything followed by another quote; but you would have problems with
stringslike™it's all right". To solvethat problem, you can capture the first quote and use it to
specify the second one:

S = [[then he said: "it's all right"!]]

a, b, c, quotedPart = string.find(s, "([\""])(.-)%")
print (quot edPart) -->it's all right

print(c) --> "

Page 234 of 351

Thefirst capture is the quote character itself and the second capture is the contents of the quote (the
substring matching the'. -).

The third use of captured valuesisin the replacement string of gsub. Like the pattern, the replacement
string may contain items like '%d’, which are changed to the respective captures when the substitution is
made. (By the way, because of those changes, a "% in the replacement string must be escaped as™ %84 .)
As an example, the following command duplicates every letter in a string, with a hyphen between the
copies.

print(string.gsub("hello Lua!", "(%)", "%-9%"))
--> h-he-el-ll-l0-0 L-Lu-ua-a!

This one interchanges adjacent characters:

print(string.gsub("hello Lua", "(.)(.)", "9%R%"))
--> ehll oulLa

Asamore useful example, let uswrite a primitive format converter, which gets a string with commands
writteninalaTleX style, such as

\ command{sone text}
and changes them to aformat in XML style,

<command>sone text </ comand>
For this specification, the following line does the job:

s = string.gsub(s, "\\(%a+){(.-)}", "<%U>9%2</9>")
For instance, if s isthe string

the \quote{task} is to \en{change} that.
that gsub call will changeit to

t he <quot e>t ask</quote> is to <enrchange</ent that.
Another useful exampleis how to trim a string:

function trim(s)

Page 235 of 351

return (string.gsub(s, ""%*(.-)%*$", "%"))
end

Note the judicious use of pattern formats. The two anchors (" and “$") ensure that we get the whole
string. Becausethe'. - ' triesto expand as little as possible, the two patterns '%s* ' match all spaces at
both extremities. Note aso that, because gsub returns two values, we use extra parentheses to discard
the extraresult (the count).

The last use of captured values is perhaps the most powerful. Wecan call st ri ng. gsub witha
function asits third argument, instead of a replacement string. When invoked thisway, st ri ng. gsub
calls the given function every time it finds a match; the arguments to this function are the captures, while
the value that the function returnsis used as the replacement string. As afirst example, the following
function does variable expansion: It substitutes the value of the global variable var nane for every
occurrence of $var namne inastring:

function expand (S)
s = string.gsub(s, "$(%w)", function (n)
return _{J nj

end)
return s
end
nane = "Lua"; status = "great"

print (expand("$nanme is $status, isn't it?"))
--> lua is great, isn't it?

If you are not sure whether the given variables have string values, you can apply t ost r i ng to their
values:

function expand (s)
return (string.gsub(s, "$(%w)", function (n)
return tostring(_{gn])
end))
end

print(expand("print = $print; a = $a"))
--> print = function: 0x8050ce0; a = nil

A more powerful example uses| oadst r i ng to evaluate whole expressions that we write in the text
enclosed by square brackets preceded by a dollar sign:

s = "sin(3) = $[math.sin(3)]; 275 = $[275]"

Page 236 of 351

print((string.gsub(s, "$(%[])", function (x)

X = "return " .. string.sub(x, 2, -2)
| ocal f = | oadstring(x)
return f()

end)))

--> sin(3) = 0.1411200080598672; 275 = 32

Thefirst matchisthe string " $[mat h. si n(3)] ", whose corresponding captureis” [mat h. si n
(3)]".Thecadltostri ng. sub removes the brackets from the captured string, so the string loaded
for execution will be" r et ur n mat h. si n(3) ". The same happens for the match " $[2"5] " .

Often wewant akind of st ri ng. gsub only to iterate on a string, without any interest in the resulting
string. For instance, we could collect the words of a string into a table with the following code:

words = {}

string.gsub(s, "(%a+)", function (w)
tabl e. i nsert(words, w)

end)

If s werethestring" hel |l o hi, agai n!", after that command the wor d table would be
{"hello", "hi", "again"}
Thest ri ng. gf i nd function offers asimpler way to write that code:

words = {}

for win string.gfind(s, "(%)") do
tabl e.insert(words, w

end

The gf i nd function fits perfectly with the generic for loop. It returns a function that iterates on all
occurrences of a pattern in astring.

We can simplify that code alittle bit more. When we call gf i nd with a pattern without any explicit
capture, the function will capture the whole pattern. Therefore, we can rewrite the previous example like
this:

words = {}

for win string.gfind(s, "%") do
tabl e.insert(words, w)

end

Page 237 of 351

For our next example, we use URL encoding, which is the encoding used by HT TP to send parametersin
aURL. This encoding encodes special characters (such as =", '&’, and +") as" ¥%XX" , where XX isthe
hexadecimal representation of the character. Then, it changes spacesto "+”. For instance, it encodes the
string"a+b = c¢" as"a%Bb+%3D+c" . Findly, it writes each parameter name and parameter value
with an =" in between and appends al pairs nanme=val ue with an ampersand in-between. For
instance, the values

nane = "al"; query = "atb = c¢"; g="yes or no"
are encoded as
nanme=al &quer y=a%2Bb+%3D+c&g=yes+or +no

Now, suppose we want to decode this URL and store each value in atable, indexed by its corresponding
name. The following function does the basic decoding:

function unescape (S)

s = string.gsub(s, "+", " ")
s = string.gsub(s, "9%4{%%)", function (h)
return string.char(tonunber(h, 16))
end)
return s
end

Thefirst statement changes each "+ in the string to a space. The second gsub matches all two-digit
hexadecimal numerals preceded by "% and calls an anonymous function. That function converts the
hexadecimal numeral into a number (t onunber , with base 16) and returns the corresponding character
(string. char). For instance,

print (unescape("a%@Bb+%38D+c")) --> atb = ¢

To decode the pairs nane=val ue we use gf i nd. Because both names and values cannot contain
either & or "=", we can match them with the pattern [*&=] +":

cgi = {}
function decode (s)
for nanme, value in string.gfind(s, "([*"&]+)=(["&=]+)") do
nanme = unescape(nane)
val ue = unescape(val ue)
cgi [nane] = val ue
end

Page 238 of 351

end

That call to gf i nd matchesall pairsin the form nane=val ue and, for each pair, the iterator returns
the corresponding captures (as marked by the parentheses in the matching string) as the values to nane
and val ue. Theloop body simply callsunescape on both strings and storesthe pair inthecgi table.

The corresponding encoding is also easy to write. First, we write the escape function; this function
encodes al special characters asa % followed by the character ASCII code in hexadecimal (the

f or mat option" %92X" makes an hexadecima number with two digits, using O for padding), and then
changes spacesto "+":

function escape (S)
s = string.gsub(s, "([&+%])", function (c)
return string. format ("%802X", string.byte(c))

end)
s = string.gsub(s, " ", "+")
return s

end
The encode function traverses the table to be encoded, building the resulting string:

function encode (t)

|l ocal s =""
for k,v in pairs(t) do
s =s .. "& .. escape(k) .. "=" .. escape(v)
end
return string.sub(s, 2) -- renove first " &
end
t = {nanme = "al", query = "at+tb = c¢", q="yes or no"}

print(encode(t)) --> g=yes+or+no&query=a%2Bb+¥3D+c&nane=al

Programming in Lua

Page 239 of 351

Programming in Lua

Part 111. The Standard Libraries Chapter 20. The String Library

20.4 - Tricks of the Trade

Pattern matching is a powerful tool for manipulating strings. Y ou can perform many complex operations
with only afew callstost ri ng. gsub and f i nd. However, as with any power, you must use it
carefully.

Pattern matching is not a replacement for a proper parser. For quick-and-dirty programs, you can do
useful manipulations on source code, but it is hard to build a product with quality. As a good example,
consider the pattern we used to match commentsin a C program: '/ % . - 9/ ". If your program has a
string containing " / *" , you will get awrong result:

test = [[char s[] = "a /* here"; [* a tricky string */]]
print(string.gsub(test, "/%.-%/", "<COVWENT>"))
--> char s[] = "a <COMVENT>

Strings with such contents are rare and, for your own use, that pattern will probably do itsjob. But you
cannot sell a program with such aflaw.

Usually, pattern matching is efficient enough for Lua programs: A Pentium 333MHz (which is not afast
machine by today's standards) takes less than a tenth of a second to match all words in atext with 200K
characters (30K words). But you can take precautions. Y ou should always make the pattern as specific
as possible; loose patterns are slower than specific ones. An extreme exampleis'(. -) %&', to get all text
in astring up to the first dollar sign. If the subject string has a dollar sign, everything goes fine; but
suppose that the string does not contain any dollar signs. The algorithm will first try to match the pattern
starting at the first position of the string. It will go through all the string, looking for a dollar. When the
string ends, the pattern fails for the first position of the string. Then, the algorithm will do the whole
search again, starting at the second position of the string, only to discover that the pattern does not match
there, too; and so on. This will take a quadratic time, which results in more than three hours in a Pentium
333MHz for a string with 200K characters. Y ou can correct this problem simply by anchoring the
pattern at the first position of the string, with "2 (. -) %&'. The anchor tells the algorithm to stop the
search if it cannot find a match at the first position. With the anchor, the pattern runsin less than a tenth
of a second.

Beware also of empty patterns, that is, patterns that match the empty string. For instance, if you try to
match names with a pattern like'%@a* ', you will find names everywhere:

i, J =string.find(";$% **#S$hell 013", "%*")

Page 240 of 351

print(i,j) -->1 0

In thisexample, thecall tost ri ng. f i nd has correctly found an empty sequence of letters at the
beginning of the string.

It never makes sense to write a pattern that begins or ends with the modifier “- “, because it will match
only the empty string. This modifier always needs something around it, to anchor its expansion.
Similarly, a pattern that includes'. * " istricky, because this construction can expand much more than
you intended.

Sometimes, it isuseful to use Luaitself to build a pattern. As an example, let us see how we can find
long linesin atext, say lines with more than 70 characters. Well, along line is a sequence of 70 or more
characters different from newline. We can match a single character different from newline with the
character class'[*\ n] '. Therefore, we can match along line with a pattern that repeats 70 times the
pattern for one character, followed by zero or more of those characters. Instead of writing this pattern by
hand, we can create it withst ri ng. r ep:

pattern = string.rep("[™\n]", 70) .. "[™M\n]*"

As another example, suppose you want to make a case-insensitive search. A way to do that is to change
any letter x in the pattern for the class'[xX] ', that is, a class including both the upper and the lower
versions of the origina letter. We can automate that conversion with a function:

function nocase (S)
s = string.gsub(s, "%", function (c)
return string.format ("[%%]", string.lower(c),
string. upper(c))
end)
return s
end

print(nocase("H there!"))

--> [hH[i1] [tT][hH [eE][rR[eE]!

Sometimes, you want to change every plain occurrence of s1 to s2, without regarding any character as
magic. If thestringss1 and s2 are literals, you can add proper escapes to magic characters while you
write the strings. But if those strings are variable values, you can use another gsub to put the escapes
for you:

sl
s2

string.gsub(sl, "(9N", "%84d")
string.gsub(s2, "%, "%080)

Page 241 of 351

In the search string, we escape all non-alphanumeric characters. In the replacement string, we escape
only the "%.

Another useful technique for pattern matching is to pre-process the subject string before the real work. A
simple example of the use of pre-processing isto change to upper case all quoted stringsin atext, where
a quoted string starts and ends with a double quote ("), but may contain escaped quotes ("\ " "):

follows a typical string: "This is \"great\"!".

Our approach to handling such casesis to pre-process the text so as to encode the problematic sequence
to something else. For instance, we could code "\ " " as"\ 1" . However, if the original text already
containsa"\ 1", we arein trouble. An easy way to do the encoding and avoid this problem isto code all
sequences "\ x" as"\ ddd" , where ddd is the decimal representation of the character x:

function code (s)
return (string.gsub(s, "\\(.)", function (x)
return string. format ("\\%3d", string.byte(x))
end))
end

Now any sequence " \ ddd" in the encoded string must have come from the coding, because any
"\ ddd" inthe original string has been coded, too. So the decoding is an easy task:

function decode (s)
return (string.gsub(s, "\\(%%l%)", function (d)
return "\\" .. string.char(d)
end))
end

Now we can complete our task. As the encoded string does not contain any escaped quote ("\ " "), we

can search for quoted strings simply with ™ . - " "

s =[[follows a typical string: "This is \"great\"!".]]
s = code(s)

s = string.gsub(s, '(".-")", string.upper)

s = decode(s)

print(s)

-->follows a typical string: "THIS IS \"GREAT\"! ",
or, in amore compact notation,
print (decode(string.gsub(code(s), "(".-")', string.upper)))

Page 242 of 351

Asamore complex task, let us return to our example of a primitive format converter, which changes
format commands written as\ command{ st ri ng} to XML style:

<command>st ri ng</ conmand>

But now our original format is more powerful and uses the backslash character as a general escape, so
that we can represent the characters '\ *, { ", and '} ", writing "\ \ ", "\ {",and "\ } " . To avoid our
pattern matching mixing up commands and escaped characters, we should recode those sequencesin the
original string. However, this time we cannot code all sequences\ x, because that would code our
commands (written as\ conmand) too. Instead, we code \ x only when x isnot a letter:

function code (s)
return (string.gsub(s, "\\ (%) ', function (x)
return string.format ("\\%3d", string.byte(x))
end))
end

Thedecode islike that of the previous example, but it does not include the backslashes in the final
string; therefore, we can call st ri ng. char directly:

function decode (5s)
return (string.gsub(s, "\\(%%%)', string.char))

end

s = [[a \enmph{command} is witten as \\comand\{text\}.]]
s = code(s)

s = string.gsub(s, "\\(%a+){(.-)}", "<WA>R</9%>")

print (decode(s))
--> a <enph>command</enph> is witten as \comand{text}.

Our last example here deals with Comma-Separated Values (CSV), atext format supported by many
programs, such as Microsoft Excel, to represent tabular data. A CSV file represents alist of records,
where each record isalist of string values written in asingle line, with commas between the values.
Values that contain commas must be written between double quotes; if such values also have quotes, the
guotes are written as two quotes. As an example, the array

{*ab, "ab, ' a"b"c', "hello "world"!", "'}
can be represented as
ab,"a,b"," a,""b""c", hello "world"!,

Page 243 of 351

To transform an array of stringsinto CSV iseasy. All we have to do isto concatenate the strings with
commas between them:

function toCSV (t)

| ocal s =
for ,p in pairs(t) do
s =s .. "," .. escapeCSV(p)
end
return string.sub(s, 2) -- renove first comma
end

If a string has commas or quotes inside, we enclose it between quotes and escape its original quotes:

function escapeCSV (s)
if string.find(s, '"[,"]") then
s =""" .. string.gsub(s, """, """") .. """
end
return s
end

To break aCSV into an array is more difficult, because we must avoid mixing up the commas written
between quotes with the commas that separate fields. We could try to escape the commas between
guotes. However, not all quote characters act as quotes; only quote characters after acomma act asa
starting quote, as long as the commaitself is acting as a comma (that is, it is not between quotes). There
are too many subtleties. For instance, two quotes may represent a single quote, two quotes, or nothing:

“hell 0""hell o", "",""

Thefirst field in thisexampleisthe string " hel | 0" hel | 0", the second field isthe string” """ (that
IS, a space followed by two quotes), and the last field is an empty string.

We could try to use multiple gsub callsto handle all those cases, but it is easier to program this task
with a more conventional approach, using an explicit loop over the fields. The main task of the loop
body isto find the next comma; it also stores the field contentsin atable. For each field, we explicitly
test whether the field starts with a quote. If it does, we do aloop looking for the closing quote. In this
loop, we use the pattern ™ (" ?) ' to find the closing quote of afield: If aquote isfollowed by another
guote, the second quote is captured and assigned to the ¢ variable, meaning that thisis not the closing
quote yet.

function fronCSV (s)

s =s .. ", -- endi ng comma

Page 244 of 351

| ocal t = {} -- table to collect fields
| ocal fieldstart =1

r epeat
-- next field is quoted? (start with ~"'?)
I f string.find(s, '~"', fieldstart) then
| ocal a, c
local i = fieldstart
r epeat
-- find closing quote
a, I, ¢ =string.find(s, ""("?)"', i+1)
until ¢ ~= """ -- quote not foll owed by quote?
if not i then error('unmatched "') end
| ocal f = string.sub(s, fieldstart+1, i-1)
table.insert(t, (string.gsub(f, """', """)))
fieldstart = string.find(s, ',', 1) + 1
el se -- unquoted; find next conm
| ocal nexti = string.find(s, ',', fieldstart)

table.insert(t, string.sub(s, fieldstart, nexti-1))
fieldstart = nexti + 1

end
until fieldstart > string.len(s)
return t
end
t = fronCSV(' "hello "" hello™, "",""")
for i, sinipairs(t) do print(i, s) end
--> 1 hello " hello
--> 2
--> 3

Programming in Lua

Page 245 of 351

Programming in Lua

Part I11. The Standard Libraries Chapter 21. The l/O Library

21 - The I/O Library

The l/O library offers two different models for file manipulation. The simple model assumes a current
input and a current output files, and its I/O operations operate on those files. The complete model uses
explicit file handles and it adopts an object-oriented style that defines all operations as methods on file

handles.
The simple model is convenient for simple things; we have been using it all along the book until now.

But it is not enough for more advanced file manipulation, such as reading from severa files
simultaneously. For those manipulations, the complete model is more convenient.

Thel/O library puts al its functionsinto thei o table.

Programming in Lua

Page 246 of 351

Programming in Lua

Part I111. The Standard Libraries Chapter 21. The l/O Library

21.1 - The Simple I/O Model

The simple model does al of its operations on two current files. The library initializes the current input
file asthe process's standard input (st di n) and the current output file as the process's standard output

(st dout). Therefore, when we execute something likei o. r ead() , weread aline from the standard
Input.

We can change those current fileswith thei o. i nput andi 0. out put functions. A cal likei o.

I nput (fil enane) opensthe given file (in read mode) and setsiit as the current input file. From this
point on, al input will come from thisfile, until another call toi o. i nput ;i 0. out put doesasimilar
job for output. In case of errors, both functions raise the error. If you want to handle errors directly, you
must usei 0. open, from the complete model.

Aswri t eissmpler thanr ead, wewill ook at it first. Thei 0. wri t e function simply gets an
arbitrary number of string arguments and writes them to the current output file. Numbers are converted
to strings following the usual conversion rules; for full control over this conversion, you should use the
f or mat function, fromthest ri ng library:

>jo.wite("sin (3) =", math.sin(3), "\n")
-->sin (3) = 0.1411200080598672

> jo.wite(string.format("sin (3) = %4f\n", math.sin(3)))
-->sin (3) = 0.1411

Avoid codelikei o.wite(a..b..c);thecdlio.wite(a, b, c) accomplishesthe same effect
with fewer resources, as it avoids the concatenations.

Asarule, you should use pr i nt for quick-and-dirty programs, or for debugging, and wr i t e when you
need full control over your output:

> print("hello", "Lua"™); print("H")
--> hello Lua
--> Hi

> jo.wite("hello", "Lua"); io.wite("H", "\n")
--> hel | oLuaHi

Page 247 of 351

Unlikepri nt,wri t e adds no extra characters to the output, such as tabs or newlines. Moreover,
wr i t e usesthe current output file, whereas pr i nt always uses the standard output. Finally, pri nt
automatically appliest ost r i ng to its arguments, so it can also show tables, functions, and nil.

Ther ead function reads strings from the current input file. Its arguments control what is read:

"rall" reads the whole file

"*1i ne" reads the next line

"*nunber" |reads anumber

num reads a string with up to num characters

Thecalio.read("*all") readsthewhole current input file, starting at its current position. If we
are at the end of file, or if thefileis empty, the call returns an empty string.

Because Lua handles long strings efficiently, a simple technique for writing filtersin Luaisto read the
whole file into a string, do the processing to the string (typically with gsub), and then write the string to
the output:

t =io.read("*all") -- read the whole file
t = string.gsub(t, ...) -- do the job
lo.write(t) -- wite the file

As an example, the following code is a complete program to code a file's content using the quoted-
printable encoding of MIME. In this encoding, non-ASCII characters are coded as =XX, where XX isthe
numeric code of the character in hexadecimal. To keep the consistency of the encoding, the "=" character
must be encoded as well. The pattern used in the gsub captures al characters with codes from 128 to
255, plus the equal sign.

t
t

lo.read("*all")

string.gsub(t, "([\128-\255=])", function (c)
return string.format ("=%2X", string.byte(c))

end)

lo.wite(t)

On a Pentium 333MHz, this program takes 0.2 seconds to convert afile with 200K characters.

Thecdlio.read("*|1ne") returnsthe next line from the current input file, without the newline
character. When we reach the end of file, the call returns nil (asthere is no next lineto return). This
pattern isthe default for r ead, soi 0. r ead() hasthe same effect asi 0. read("*1 i ne") . Usudly,
we use this pattern only when our algorithm naturally handles the file line by line; otherwise, we favor

Page 248 of 351

reading the whole file at once, with * al | , or in blocks, aswe will see later. As a simple example of the
use of this pattern, the following program copies its current input to the current output, numbering each
line:

| ocal count =1
while true do

| ocal line = io.read()
if line == nil then break end
lo.wite(string.format("%d ", count), line, "\n")
count = count + 1

end

However, to iterate on awholefile line by line, we do better to usethei o. | i nes iterator. For
instance, we can write a complete program to sort the lines of afile asfollows:

| ocal lines = {}

-- read the lines in table 'lines'

for line in io.lines() do
table.insert(lines, line)

end

-- sort

t abl e. sort (li nes)
-- wite all the lines
for i, I inipairs(lines) doio.wite(l, "\n") end

This program sorts afile with 4.5 MB (32K lines) in 1.8 seconds (on a Pentium 333MHz), against 0.6
seconds spent by the system sor t program, which iswritten in C and highly optimized.

Thecal i o. read("*nunber") readsanumber from the current input file. Thisisthe only case
where r ead returns a number, instead of a string. When you need to read many numbers from afile, the
absence of the intermediate strings can make a significant performance improvement. The* nunber
option skips any spaces before the number and accepts number formatslike - 3, +5. 2, 1000, and -

3. 4e- 23. If it cannot find a number at the current file position (because of bad format or end of file), it
returns nil.

You can call r ead with multiple options; for each argument, the function will return the respective
result. Suppose you have afile with three numbers per line:

6.0 -3. 23 15el12
4.3 234 1000001

Page 249 of 351

Now you want to print the maximum of each line. Y ou can read al three numbersin asinglecall to
read:

while true do
| ocal n1l, n2, n3 = io.read("*nunber", "*nunber",
"*nunber")
I f not nl then break end
print(math. max(nl, n2, n3))
end

In any case, you should always consider the alternative of reading the whole file with option" *al | *
fromi o. r ead and then using gf i nd to break it up:

| ocal pat = "(%5+) ¥s+(¥%5S+) ¥s+(%o+) Us+"

for nl, n2, n3 in string.gfind(io.read("*all"), pat) do
print(math. max(nl, n2, n3))

end

Besides the basic read patterns, you can call r ead with a number n as argument: In thiscase, r ead
tries to read n characters from the input file. If it cannot read any character (end of file), r ead returns
nil; otherwise, it returns a string with at most n characters. As an example of this read pattern, the
following program is an efficient way (in Lua, of course) to copy afilefrom st di n tost dout :

| ocal size = 2713 -- good buffer size (8K)
while true do
| ocal bl ock = io.read(size)

i f not block then break end
| 0. write(bl ock)
end

Asaspecia case, i 0. r ead(0) worksasatest for end of file: It returns an empty string if thereis
more to be read or nil otherwise.

Programming in Lua

Page 250 of 351

Programming in Lua

Part I111. The Standard Libraries Chapter 21. The l/O Library

21.2 - The Complete 1/O Model

For more control over /O, you can use the complete model. A central concept in this model isthefile
handle, which is equivalent to streams (FI LE*) in C: It represents an open file with a current position.

To open afile, you usethei 0. open function, which mimicsthef open functionin C. It receives as
arguments the name of the file to open plus a mode string. That mode string may containan 'r ~ for
reading, a 'w for writing (which also erases any previous content of thefile), or an "a” for appending,
plus an optional "b” to open binary files. The open function returns a new handle for the file. In case of
errors, open returnsnil, plus an error message and an error number:

print(io.open("non-existent file", "r"))
-->nil No such file or directory 2

print(io.open("/etc/passwd”, "w'))
-->nil Per m ssi on deni ed 13

The interpretation of the error numbersis system dependent.
A typical idiom to check for errorsis
| ocal f = assert(io.open(filenane, node))

If the open fails, the error message goes as the second argument to asser t , which then shows the
message.

After you open afile, you can read from it or write to it with the methodsr ead/wr i t e. They are
similar to ther ead/wr i t e functions, but you call them as methods on the file handle, using the colon
syntax. For instance, to open afile and read it al, you can use a chunk like this:

| ocal f = assert(io.open(filenane, "r"))
local t = f:read("*all")
f:close()

The l/O library also offers handles for the three predefined C streams. i 0. st di n,i o. st dout , and
| 0. st derr. So, you can send amessage directly to the error stream with a code like this:

Page 251 of 351

| 0.stderr:wite(nmessage)

We can mix the complete model with the simple model. We get the current input file handle by calling
| 0.1 nput (), without arguments. We set the current input file handle with thecall i 0. i nput
(handl e) . (Smilar callsareaso valid for i 0. out put .) For instance, if you want to change the
current input file temporarily, you can write something like this:

| ocal tenp = io0.input() -- save current file

| 0.1 nput ("new nput") -- open a new current file

. -- do sonething with new i nput

| o.input():close() -- close current file

| 0.1 nput (tenp) -- restore previous current file

Programming in Lua

Page 252 of 351

Programming in Lua

Part I111. The Standard Libraries Chapter 21. The l/O Library

21.2.1 - A Small Performance Trick

Usually, in Lua, it is much faster to read afile as awhole than to read it line by line. However,
sometimes we must face some big files (say, tens or hundreds megabytes) for which it is not reasonable
to read them all at once. If you want to handle such big files with maximum performance, the fastest
way isto read them in reasonably large chunks (e.g., 8 KB each). To avoid the problem of breaking lines
in the middle, you ssimply ask to read a chunk plus aline:

| ocal lines, rest = f:read(BUFSI ZE, "*I|ine")

Thevariabler est will get therest of any line broken by the chunk. We then concatenate the chunk and
thisrest of line. That way, the resulting chunk will always break at line boundaries.

A typical example of that technique is thisimplementation of wc, a program to count the number of
characters, words, and linesin afile:

| ocal BUFSI ZE = 2713 -- 8K
local f = io.input(arg[l]) -- open input file
| ocal cc, Ilc, wo =0, 0, O -- char, line, and word counts

while true do
| ocal lines, rest = f:read(BUFSI ZE, "*I|ine")
if not lines then break end
if rest then lines = lines .. rest .. '"\n" end
cc = cc + string.len(lines)
-- count words in the chunk
| ocal _,t = string.gsub(lines, "%&+", "")
Ww = w +t
-- count newines in the chunk
_,t = string.gsub(lines, "\n", "\n")
lc = 1lc + t
end
print(lc, wc, cc)

Programming in Lua

Page 253 of 351

Programming in Lua

Part I111. The Standard Libraries Chapter 21. The l/O Library

21.2.2 - Binary Files

The simple model functionsi o. i nput andi 0. out put aways open afilein text mode (the default).
In Unix, there is no difference between binary files and text files. But in some systems, notably
Windows, binary files must be opened with a special flag. To handle such binary files, you must usei o.
open, with theletter "b” in the mode string.

Binary datain Luaare handled similarly to text. A string in Luamay contain any bytes and ailmost all
functionsin the libraries can handle arbitrary bytes. (Y ou can even do pattern matching over binary data,
as long as the pattern does not contain a zero byte. If you want to match the byte zero, you can use the
class %z instead.)

Typicaly, you read binary data either withthe* al | pattern, that reads the whole file, or with the
pattern n, that reads n bytes. As a simple example, the following program converts atext file from DOS
format to Unix format (that is, it translates sequences of carriage return-newlines to newlines). It does
not use the standard I/O files (st di n/st dout), because those files are open in text mode. Instead, it
assumes that the names of the input file and the output file are given as arguments to the program:

| ocal inp = assert(io.open(arg[1l], "rb"))
| ocal out = assert(io.open(arg[2], "wbh"))
| ocal data = inp:read("*all")

data = string.gsub(data, "\r\n", "\n")
out:wite(data)

assert (out:close())
Y ou can call this program with the following command line:
> lua prog.lua file.dos file.unix

As another example, the following program prints al strings found in a binary file. The program
assumes that a string is any zero-terminated sequence of six or more valid characters, where avalid
character is any character accepted by the pattern val i dchar s. In our example, that comprises the
alphanumeric, the punctuation, and the space characters. We use concatenationand st ri ng. r ep to
create a pattern that captures all sequences of six or moreval i dchar s. The % at the end of the
pattern matches the byte zero at the end of a string.

Page 254 of 351

| ocal f = assert(io.open(arg[l], "rb"))
| ocal data = f:read("*all")
| ocal validchars = "[%Wp%]"

| ocal pattern = string.rep(validchars, 6) .. "+%"
for win string.gfind(data, pattern) do

print(w)
end

As alast example, the following program makes a dump of abinary file. Again, the first program
argument isthe input file name; the output goes to the standard output. The program reads thefilein
chunks of 10 bytes. For each chunk, it writes the hexadecimal representation of each byte, and then it
writes the chunk as text, changing control characters to dots.

| ocal f = assert(io.open(arg[1l], "rb"))
| ocal block = 10
while true do

| ocal bytes = f:read(bl ock)

I f not bytes then break end

for b in string.gfind(bytes, ".") do
lo.wite(string.format("%®2X ", string. byte(b)))
end
lo.wite(string.rep("” ", block - string.len(bytes) + 1))
lo.wite(string.gsub(bytes, "%", "."), "\n")
end

Suppose we store that program in afile named vi p; if we apply the program to itself, with the call
pronpt> lua vip vip

it will produce an output like this (in a Unix machine):
6C 6F 63 61 6C 20 66 20 3D 20 | ocal f =
61 73 73 65 72 74 28 69 6F 2E assert (io.

6F 70 65 6E 28 61 72 67 5B 31 open(arg[1l
5D 2C 20 22 72 62 22 29 29 0A], "rb")).

22 25 63 22 2C 20 22 2E 22 29 "0, ".")
2C 20 22 5C 6E 22 29 OA 65 6E , "\n").en
64 OA d.

Page 255 of 351

Programming in Lua

Part I111. The Standard Libraries Chapter 21. The l/O Library

21.3 - Other Operations on Files

Thet npf i | e function returns a handle for atemporary file, open in read/write mode. That fileis
automatically removed (deleted) when your program ends. Thef | ush function executes all pending
writesto afile. Likethewr i t e function, you can call it asafunction, i o. f I ush(), to flush the
current output file; or asamethod, f : f | ush(), toflushfilef .

The seek function can be used both to get and to set the current position of afile. Itsgeneral form s
fil ehandl e: seek(whence, offset).Thewhence parameter isastring that specifies how the
offset will be interpreted. Itsvalid valuesare " set " , when offsets are interpreted from the beginning of
thefile; " cur ", when offsets are interpreted from the current position of thefile; and " end" , when
offsets are interpreted from the end of the file. Independently of the value of whence, the call returns
the final current position of the file, measured in bytes from the beginning of thefile.

The default value for whence is" cur " andfor of f set iszero. Therefore, thecall fi | e: seek()
returns the current file position, without changing it; thecall fi | e: seek("set ") resetsthe position
to the beginning of thefile (and returns zero); and thecall fi | e: seek(" end") setsthe position to
the end of thefile, and returnsits size. The following function gets the file size without changing its
current position:

function fsize (file)

| ocal current = file:seek() -- get current position
| ocal size = file:seek("end") -- get file size
file:seek("set", current) -- restore position
return size

end

All the previous functions return nil plus an error message in case of errors.

Programming in Lua

Page 256 of 351

Programming in Lua

Part I111. The Standard Libraries Chapter 22. The Operating System
Library

22 - The Operating System Library

The Operating System library includes functions for file manipulation, for getting the current date and
time, and other facilities related to the operating system. It isdefined in table os. Thislibrary paysa
price for Lua portability. Because Luaiswrittenin ANSI C, it uses only the functions that the ANSI
standard defines. Many OS facilities, such as directory manipulation and sockets, are not part of this
standard and therefore the system library does not provide them. There are other Lua libraries, not
included in the main distribution, that provide extended OS access. Examples are the posi X library,
which offers all functionality of the POSIX.1 standard to Lua; and | uasocket , for network support.

For file manipulation, all that thislibrary providesisan os. r enane function, that changes the name of
afile; and 0s. r enove, that removes (deletes) afile.

Programming in Lua

Page 257 of 351

Programming in Lua

Part I111. The Standard Libraries Chapter 22. The Operating System
Library

22.1 - Date and Time

Two functions, t i me and dat e, do all date and time queriesin Lua

Thet i me function, when called without arguments, returns the current date and time, coded as a
number. (In most systems, that number is the number of seconds since some epoch.) When called with a
table, it returns the number representing the date and time described by the table. Such date tables have
the following significant fields:

year |afull year

nont h |01-12

day |01-31

hour |01-31

mn |00-59

sec |00-59

I sdst |aboolean, trueif daylight saving

The first three fields are mandatory; the others default to noon (12:00:00) when not provided. In aUnix
system (where the epoch is 00:00:00 UTC, January 1, 1970) running in Rio de Janeiro (which isthree
hours west of Greenwich), we have the following examples:

-- obs: 10800 = 3*60*60 (3 hours)
print(os.tinme{year=1970, nonth=1, day=1, hour=0})
--> 10800
print(os.tinme{year=1970, nonth=1, day=1, hour=0, sec=1})
--> 10801
print(os.tinme{year=1970, nonth=1, day=1})
--> 54000 (obs: 54000 = 10800 + 12*60*60)

The dat e function, despite its name, isakind of areverse of thet i me function: It converts a number
representing the date and time back to some higher-level representation. Itsfirst parameter is aformat
string, describing the representation we want. The second is the numeric date-time; it defaultsto the
current date and time.

Page 258 of 351

To produce a date table, we use the format string " *t " . For instance, the following code
tenp = os.date("*t", 906000490)
produces the table

{year
hour

259, wday = 4,

1998, nonth = 9, day = 16, yday =
= fal se}

= 23, mn = 48, sec = 10, isdst
Notice that, besides the fields used by os. t i e, the table created by 0s. dat e also gives the week
day (wday, 1is Sunday) and the year day (yday, 1isJanuary 1).

For other format strings, os. dat e formats the date as a string, which is a copy of the format string
where specific tags are replaced by information about time and date. All tags are represented by a "%
followed by aletter, asin the next examples:

print(os.date("today is %A in %B"))
--> today is Tuesday, in My
print(os.date(" %", 906000490))
--> 09/16/ 1998

All representations follow the current locale. Therefore, in alocale for Brazil-Portuguese, %8 would
resultin" set enbr 0" and % in" 16/ 09/ 98" .

The following table shows each tag, its meaning, and its value for September 16, 1998 (a Wednesday),
at 23:48:10. For numeric values, the table shows also their range of possible values:

%a |abbreviated weekday name (e.g., \ed)

%A [full weekday name (e.g., Wednesday)

%b |abbreviated month name (e.g., Sep)

%8 [full month name (e.g., Sept enber)

% |date and time (e.g., 09/ 16/ 98 23: 48: 10)
%l |day of the month (16) [01-31]

%H |hour, using a 24-hour clock (23) [00-23]

% |hour, using a 12-hour clock (11) [01-12]

%M |minute (48) [00-59]

%m|month (09) [01-12]

Page 259 of 351

%p |either "ant’ or " pm' (pm

%5 |second (10) [00-61]

%w |weekday (3) [0-6 = Sunday-Saturday]
%« |date (e.g., 09/ 16/ 98)

X [time (e.g., 23: 48: 10)

% [full year (1998)

%y |two-digit year (98) [00-99]

%80 /the character "%

If you call dat e without any arguments, it usesthe % format, that is, complete date and time
information in areasonable format. Note that the representations for %, %X, and %€ change according
to the locale and the system. If you want a fixed representation, such as i dd/ yyyy, use an explicit
format string, such as™ %m %a/ %™ .

Theos. cl ock function returns the number of seconds of CPU time for the program. Itstypical useis
to benchmark a piece of code:

| ocal x = os.clock()

local s =0

for i=1,100000 do s = s + i end
print(string.format("elapsed tinme: % 2f\n", os.clock() - x))

Programming in Lua

Page 260 of 351

Programming in Lua

Part I111. The Standard Libraries Chapter 22. The Operating System
Library

22.2 - Other System Calls

Theos. exi t function terminates the execution of a program. The os. get env function gets the
value of an environment variable. It receives the name of the variable and returns a string with its value:

print(os.getenv("HOVE")) --> [/ home/ | ua

If the variable is not defined, the call returns nil. The function os. execut e runs a system command; it
isequivalent to the syst emfunction in C. It receives a string with the command and returns an error
code. For instance, both in Unix and in DOS-Windows, you can write the following function to create
new directories:

function createDir (dirnane)
os. execute("nkdir " di r nane)
end

The os. execut e function is powerful, but it is also highly system dependent.

Theos. set | ocal e function sets the current locale used by a L ua program. Locales define behavior
that is sensitive to cultural or linguistic differences. Theset | ocal e function hastwo string
parameters. the locale name and a category, which specifies what features the locale will affect. There
are six categories of locales. " col | at e" controls the alphabetic order of strings; " ct ype" controls
the types of individual characters (e.g., what is aletter) and the conversion between lower and upper
cases; " nonet ar y" hasno influence in Lua programs; " nuner i ¢" controls how numbers are
formatted; "t i me" controls how date and time are formatted (i.e., function os. dat e); and" al | "
controls all the above functions. The default category is" al | ", so that if you call set | ocal e with
only the locale name it will set all categories. Theset | ocal e function returns the locale name or nil if
it fails (usually because the system does not support the given locale).

print(os.setlocale("l SO8859-1", "collate")) --> |1 SO 8859-1
The category " nuner i c" isalittletricky. Although Portuguese and other Latin languages use a
comma instead of a point to represent decimal numbers, the locale does not change the way that Lua

parses numbers (among other reasons because expressions like pri nt (3, 4) aready have ameaning
in Lua). Therefore, you may end with a system that cannot recognize numbers with commas, but cannot

Page 261 of 351

understand numbers with points either:

-- set |ocale for Portuguese-Brazil

print(os.setlocale('pt_BR)) --> pt _BR
print(3,4) --> 3 4
print(3.4) --> stdin:1: mal forned nunber near " 3.4

Programming in Lua

Page 262 of 351

Programming in Lua

Part I11. The Standard Libraries Chapter 23. The Debug Library

23 - The Debug Library

The debug library does not give you a debugger for Lua, but it offers all the primitives that you need for
writing a debugger for Lua. For performance reasons, the official interface to these primitivesis through
the C API. The debug library in Luais away to access these functions directly within Luacode. This
library declares al its functionsinside the debug table.

Unlike the other libraries, you should use the debug library with parssimony. First, some of its
functionality is not exactly famous for performance. Second, it breaks some sacred truths of the
language, such as that you cannot access alocal variable from outside the function that created it.
Frequently, you may not want to open thislibrary in your final version of a product, or else you may
want to erase it:

debug = nil

The debug library comprises two kinds of functions: introspective functions and hooks. Introspective
functions allow us to inspect several aspects of the running program, such asits stack of active
functions, current line of execution, and values and names of local variables. Hooks allow you to trace
the execution of a program.

An important concept in the debug library isthe stack level. A stack level isanumber that refersto a
particular function that is active at that moment, that is, it has been called and has not returned yet. The
function calling the debug library has level 1, the function that called it has level 2, and so on.

Programming in Lua

Page 263 of 351

Programming in Lua

Part I11. The Standard Libraries Chapter 23. The Debug Library

23.1 - Introspective Facilities

The main introspective function in the debug library isthedebug. get i nf o function. Itsfirst
parameter may be a function or a stack level. When you call debug. get i nf o(f 0o) for some
function f 00, you get a table with some data about that function. The table may have the following
fields:

. sour ce --- Where the function was defined. If the function was defined in a string (through
| oadst ri ng), sour ce isthat string. If the function was defined in afile, sour ce isthefile
name prefixed with a" @.

. short _src --- A short version of sour ce (up to 60 characters), useful for error messages.
. |l'i nedefi ned --- Theline of the source where the function was defined.

. What --- What thisfunction is. Optionsare” Lua" if f oo isaregular Luafunction, " C" if itis
aC function, or " mai n" if it isthe main part of a Lua chunk.

. hane --- A reasonable name for the function.

. nanewhat --- What the previousfield means. Thisfield may be" gl obal "," 1 ocal ",
“met hod","field",or"" (theempty string). The empty string means that Lua did not find a
name for the function.

. nups --- Number of upvalues of that function.

f unc --- Thefunction itself: see later.

When f oo isa C function, Lua does not have much data about it. For such functions, only the fields
what , nane, and nanewhat arerelevant.

When you call debug. geti nf o(n) for some number n, you get data about the function active at that
stack level. For instance, if nis 1, you get data about the function doing the call. (When nis 0, you get
dataabout get i nf o itself, aC function.) If nislarger than the number of active functionsin the stack,
debug. get i nf o returns nil. When you query an active function, calling debug. get i nf o witha
number, the result table has an extrafield, cur r ent | i ne, with the line where the function is at that

Page 264 of 351

moment. Moreover, f unc hasthe function that is active at that level.

Thefield nane istricky. Remember that, because functions are first-class values in Lua, a function may
not have a name, or may have several names. Luatries to find a name for afunction by looking for a
global variable with that value, or else looking into the code that called the function, to see how it was
called. This second option works only when we call get i nf o with anumber, that is, we get
information about a particular invocation.

Theget i nf o function is not efficient. Lua keeps debug information in aform that does not impair
program execution; efficient retrieval is a secondary goal here. To achieve better performance,

get i nf 0 hasan optional second parameter that selects what information to get. With this parameter, it
does not waste time collecting data that the user does not need. The format of this parameter is a string,
where each letter selects a group of data, according to the following table:

selectsfields nane and nanewhat
selectsfield f unc
selectsfieldssour ce,short _src,what,and! i nedefi ned

o
=
5
K

selectsfieldcurrent | i ne

‘U’ |selectsfield nup

The following function illustrates the use of debug. get i nf o. It prints a primitive traceback of the
active stack:

function traceback ()

| ocal level =1
while true do
| ocal info = debug.getinfo(level, "SI")
I f not info then break end
I f info.what == "C" then -- 1s a C function?
print(level, "C function")
el se -- a Lua function

print(string.format("[%]: %",
I nfo.short _src, info.currentline))
end
| evel = level + 1
end
end

It is not difficult to improve this function, including more datafrom get i nf o. Actually, the debug
library offers such an improved version, debug. t r aceback. Unlike our version, debug.

Page 265 of 351

t raceback does not print its result; instead, it returns a string.

Programming in Lua

Page 266 of 351

Programming in Lua

Part I11. The Standard Libraries Chapter 23. The Debug Library

23.1.1 - Accessing Local Variables

Y ou can access the local variables of any active function by calling get | ocal , from thedebug
library. It has two parameters:. the stack level of the function you are querying and a variable index. It
returns two values: the name and the current value of that variable. If the variable index islarger than the
number of active variables, get | ocal returnsnil. If the stack level isinvalid, it raises an error. (You
can usedebug. get i nf o to check the validity of astack level.)

Lua numbers local variablesin the order that they appear in afunction, counting only the variables that
are active in the current scope of the function. For instance, the code

function foo (a,b)

| ocal X

do local ¢ =a - b end

local a =1

while true do
| ocal name, val ue = debug.getlocal (1, a)
i f not nane then break end
print (name, val ue)

a=a+1
end

end

foo(10, 20)
will print

a 10

b 20

X ni |

a 4

The variable with index 1 isa (thefirst parameter), 2isb, 3isx, and 4 is another a. At the point where
get |l ocal iscalled, c isaready out of scope, while nane and val ue are not yet in scope.
(Remember that local variables are only visible after their initialization code.)

Y ou can also change the values of local variables, with debug. set | ocal . Itsfirst two parameters are

Page 267 of 351

astack level and avariableindex, likeinget | ocal . Itsthird parameter is the new value for that
variable. It returns the variable name, or nil if the variable index is out of scope.

Programming in Lua

Page 268 of 351

Programming in Lua

Part I11. The Standard Libraries Chapter 23. The Debug Library

23.1.2 - Accessing Upvalues

Thedebug library aso allows usto access the upvalues that a Luafunction uses, with get upval ue.
Unlike local variables, however, afunction hasits upvalues even when it is not active (thisis what
closures are about, after all). Therefore, the first argument for get upval ue isnot astack level, but a
function (a closure, more precisely). The second argument is the upvalue index. Lua numbers upvalues
in the order they are first referred in a function, but this order is not relevant, because a function cannot
have two upvalues with the same name.

Y ou can also update upvalues, with debug. set upval ue. Asyou might expect, it has three
parameters: a closure, an upvalue index, and the new value. Likeset | ocal , it returns the name of the
upvalue, or nil if the upvalue index is out of range.

The following code shows how we can access the value of any given variable of a calling function,
given the variable name:

function getvarval ue (nane)
| ocal val ue, found

-- try local variables

local i =1

while true do
| ocal n, v = debug.getlocal (2, i)
I f not n then break end
I f n == nane then

end
I f found then return val ue end

-- try upval ues
| ocal func = debug.getinfo(2).func
i =1
while true do
| ocal n, v = debug. getupval ue(func, i)

Page 269 of 351

if not n then break end
if n == nane then return v end
I =i + 1

end

-- not found; get gl obal
return getfenv(func)[nane]
end

First, we try alocal variable. If there is more than one variable with the given name, we must get the one
with the highest index; so we must always go through the whole loop. If we cannot find any local
variable with that name, then we try upvalues. First, we get the calling function, with debug. geti nf o
(2) . func, and then we traverse its upvalues. Finally, if we cannot find an upvalue with that name,
then we get a global variable. Notice the use of the argument 2 in the callsto debug. get | ocal and
debug. get i nf o to access the calling function.

Programming in Lua

Page 270 of 351

Programming in Lua

Part I11. The Standard Libraries Chapter 23. The Debug Library

23.2 - Hooks

The hook mechanism of the debug library allows usto register afunction that will be called at specific
events as your program runs. There are four kinds of events that can trigger a hook: call events happen
every time Lua calls afunction; return events happen every time afunction returns; line events happen
when Lua starts executing a new line of code; and count events happen after a given number of
instructions. Lua calls hooks with a single argument, a string describing the event that generated the call:
“call","return”,"line",or"count".Moreover, for line events, it also passes a second
argument, the new line number. We can always use debug. get i nf o to get more information inside a
hook.

To register ahook, we call debug. set hook with two or three arguments: The first argument is the
hook function; the second argument is a string that describes the events we want to monitor; and an
optional third argument is a number that describes at what frequency we want to get count events. To
monitor the call, return, and line events, we add their first letters ("'c”, 'r ", or °| ”) in the mask string. To
monitor the count event, we simply supply a counter as the third argument. To turn off hooks, we call
set hook with no arguments.

As asimple example, the following code installs a primitive tracer, which prints the number of each new
line the interpreter executes:

debug. set hook(print, "I")

It simply installs pri nt asthe hook function and instructs Luato call it only at line events. A more
elaborated tracer can use get i nf o to add the current file name to the trace:

function trace (event, |ine)
| ocal s = debug.getinfo(2).short_src
print(s .. ":" .. line)

end

debug. set hook(trace, "I")

Programming in Lua

Page 271 of 351

Programming in Lua

Part I11. The Standard Libraries Chapter 23. The Debug Library

23.3 - Profiles

Despite its name, the debug library is useful for tasks other than debugging. A common such task is
profiling. For a profile with timing, it is better to use the C interface: The overhead of alLuacall for each
hook istoo high and usually invalidates any measure. However, for counting profiles, Lua code does a
decent job. In this section, we will develop a rudimentary profiler, which lists the number of times that
each function in the programis called in arun.

The main data structure of our program is a table that associates functions to their call countersand a
table that associates functions to their names. The indices to these tables are the functions themselves.

| ocal Counters = {}
| ocal Nanmes = {}

We could retrieve the name data after the profiling, but remember that we get better results if we get the
name of afunction whileit is active, because then Lua can look at the code that is calling the function to
find its name.

Now we define the hook function. Itsjob is to get the function being called and increment the
corresponding counter; it also collects the function name:

| ocal function hook ()
| ocal f = debug.getinfo(2, "f").func
i f Counters[f] == nil then -- first time f' is called?
Counters[f] =1
Nanmes[f] = debug.getinfo(2, "Sn")

else -- only increnent the counter
Counters[f] = Counters[f] + 1
end
end

The next step isto run the program with this hook. We will assume that the main chunk of the program
isin afile and that the user gives this file name as an argument to the profiler:

pronpt> lua profiler nmain-prog

Page 272 of 351

With this scheme, we get the filenamein ar g[1] , turn on the hook, and run thefile:

| ocal f = assert(loadfile(arg[1l]))

debug. set hook(hook, "c") =-- turn on the hook
f() -- run the main program
debug. set hook() -- turn off the hook

The last step is to show the results. The next function produces a name for a function. Because function
names in Lua are so uncertain, we add to each function its location, given as a pair file:line. If afunction
has no name, then we use only its location. If afunction isa C function, we use only its name (it has no
location).

function getnane (func)
| ocal n = Nanes[func]
I f n.what == "C' then
return n.nane
end
| ocal loc = string.format ("[%s]: %",
n.short _src, n.linedefined)

I f n.namewhat ~= "" then
return string.format ("% (%)", |oc, n.nane)
el se
return string.format("%", |oc)
end
end

Finally, we print each function with its counter:

for func, count in pairs(Counters) do
print (getname(func), count)
end

If we apply our profiler to the mar kov example that we developed in Section 10.2, we get aresult like
this:

[mar kov. lua] : 4 884723
wite 10000

[markov.lua]:0 (f) 1

r ead 31103

sub 884722

[markov.lua]:1 (allwords) 1

[mar kov. lua] : 20 (prefix) 894723

Page 273 of 351

find 915824

[mar kov. lua]: 26 (insert) 884723
random 10000

set hook 1

i nsert 884723

That means that the anonymous function at line 4 (which is the iterator function defined inside
al 1 wor ds) wascalled 884,723 times,wri t e (i 0. wi t e) was called 10,000 times, and so on.

There are several improvements that you can make to this profiler, such as to sort the output, to print
better function names, and to improve the output format. Nevertheless, this basic profiler is already
useful asit isand can be used as a base for more advanced tools.

Programming in Lua

Page 274 of 351

Programming in Lua

Part IV. The C AP Chapter 24. An Overview of the C AP

24 - An Overview of the C API

Luais an embedded language. That means that Lua is not a stand-alone package, but alibrary that can
be linked with other applications so asto incorporate L ua facilities into these applications.

Y ou may be wondering: If Luais not a stand-alone program, how come we have been using Lua stand
alone through the whole book? The solution to this puzzle is the Luainterpreter (the executable | ua).
Thisinterpreter isatiny application (with less than five hundred lines of code) that uses the Lualibrary
to implement the stand-alone interpreter. This program handles the interface with the user, taking her
files and strings to feed them to the Lual library, which does the bulk of the work (such as actually
running Lua code).

This ability to be used as alibrary to extend an application is what makes Lua an extension language. At
the same time, a program that uses L ua can register new functions in the L ua environment; such
functions are implemented in C (or another language) and can add facilities that cannot be written
directly in Lua. Thisiswhat makes Lua an extensible language.

These two views of Lua (as an extension language and as an extensible language) correspond to two
kinds of interaction between C and Lua. In thefirst kind, C has the control and Luaisthelibrary. The C
code in thiskind of interaction is what we call application code. In the second kind, Lua has the control
and Cisthelibrary. Here, the C codeis called library code. Both application code and library code use
the same APl to communicate with Lua, the so called C API.

The C APl isthe set of functions that allow C code to interact with Lua. It comprises functions to read
and write Lua global variables, to call Luafunctions, to run pieces of Lua code, to register C functions
so that they can later be called by Lua code, and so on. (Throughout this text, the term "function”
actually means "function or macro". The APl implements severa facilities as macros.)

The C API follows the C modus operandi, which is quite different from Lua. When programming in C,
we must care about type checking (and type errors), error recovery, memory-allocation errors, and
severa other sources of complexity. Most functions in the APl do not check the correctness of their
arguments; it is your responsibility to make sure that the arguments are valid before calling afunction. If
you make mistakes, you can get a " segmentation fault" error or something similar, instead of a well-
behaved error message. Moreover, the APl emphasizes flexibility and simplicity, sometimes at the cost
of ease of use. Common tasks may involve several APl calls. This may be boring, but it gives you full
control over all details, such as error handling, buffer sizes, and the like.

Page 275 of 351

Asitstitle says, the goal of this chapter isto give an overview of what isinvolved when you use Lua
from C. Do not bother understanding all the details of what is going on now. Later we will fill in the
details. Nevertheless, do not forget that you can find more details about specific functionsin the Lua
reference manual. Moreover, you can find several examples of the use of the API in the Luadistribution
itself. The Lua stand-alone interpreter (I ua. ¢) provides examples of application code, while the
standard libraries (I mat hli b. ¢, strli b. c, etc.) provide examples of library code.

From now on, we are wearing a C programmers' hat. When we talk about "you", we mean you when
programming in C, or you impersonated by the C code you write.

A major component in the communication between Lua and C is an omnipresent virtual stack. Almost
al API calls operate on values on this stack. All data exchange from Luato C and from C to Lua occurs
through this stack. Moreover, you can use the stack to keep intermediate results too. The stack helpsto
solve two impedance mismatches between Lua and C: Thefirst is caused by Lua being garbage
collected, whereas C requires explicit deallocation; the second results from the shock between dynamic
typing in Lua versus the static typing of C. We will discuss the stack in more detail in Section 24.2.

Programming in Lua

Page 276 of 351

Programming in Lua

Part IV. The C AP Chapter 24. An Overview of the C AP

24.1 - A First Example

We will start this overview with a simple example of an application program: a stand-alone Lua
interpreter. We can write a primitive stand-alone interpreter as follows:

#1 ncl ude <stdi o. h>
#1 ncl ude <l ua. h>

#1 ncl ude <l auxlib. h>
#1 ncl ude <lualib. h>

int main (void) {
char buff[256];

int error;

lua_State *L = | ua_open(); /* opens Lua */

| uaopen_base(L); /| * opens the basic library */
| uaopen_tabl e(L); /* opens the table library */
| uaopen_io(L); /* opens the I/Olibrary */

| uaopen_string(L); /* opens the string lib. */

| uaopen_mat h(L); /* opens the math lib. */

while (fgets(buff, sizeof(buff), stdin) !'= NULL) {

error = lualL_| oadbuffer (L, buff, strlen(buff), "line") ||
| ua_pcall (L, 0, 0, 0);
i f (error) {

fprintf(stderr, "%", lua_tostring(L, -1));
| ua_pop(L, 1); /* pop error nessage fromthe stack */

}
}
| ua_cl ose(L);
return O;

}

The header file| ua. h defines the basic functions provided by Lua. That includes functionsto create a
new Lua environment (such as|l ua_open), to invoke Luafunctions (such as| ua_pcal |), to read
and write global variables in the Lua environment, to register new functionsto be called by Lua, and so
on. Everything defined in| ua. h hasthel ua_ prefix.

Page 277 of 351

The header filel aux| i b. h defines the functions provided by the auxiliary library (auxlib). All its
definitions start with | uaL_ (e.g.,| uaL_| oadbuf f er). The auxiliary library uses the basic API
provided by | ua. h to provide a higher abstraction level; all Lua standard libraries use the auxlib. The
basic API strives for economy and orthogonality, whereas auxlib strives for practicality for common
tasks. Of course, it isvery easy for your program to create other abstractions that it needs, too. Keep in
mind that the auxlib has no access to the internals of Lua. It doesits entire job through the official basic
API.

The Lualibrary defines no global variables at al. It keeps all its state in the dynamic structure
| ua_St at e and a pointer to this structure is passed as an argument to all functionsinside Lua. This
implementation makes L ua reentrant and ready to be used in multithreaded code.

Thel ua_open function creates a new environment (or state). When| ua_open creates afresh
environment, this environment contains no predefined functions, not even pri nt . To keep Lua small,
al standard libraries are provided as separate packages, so that you do not have to use them if you do not
need to. The header filel ual i b. h defines functions to open the libraries. The call to| uaopen_i o,
for instance, createsthei o table and registersthe 1/0 functions (i 0. read, i 0. wi t e, etc.) inside it.

After creating a state and populating it with the standard libraries, it istime to interpret the user inpuit.
For each line the user enters, the program first calls| uaL_| oadbuf f er to compile the code. If there
are no errors, the call returns zero and pushes the resulting chunk on the stack. (Remember that we will
discuss this "magic" stack in detail in the next section.) Then the program calls| ua_pcal | , which
pops the chunk from the stack and runsit in protected mode. Likel uaL_| oadbuf fer,| ua_pcal |
returns zero if there are no errors. In case of errors, both functions push an error message on the stack;
we get thismessage with | ua_t ost r i ng and, after printing it, we remove it from the stack with

| ua_pop.

Notice that, in case of errors, this program simply prints the error message to the standard error stream.
Real error handling can be quite complex in C and how to do it depends on the nature of your
application. The Lua core never writes anything directly to any output stream; it signals errors by
returning error codes and error messages. Each application can handle these signals in away most
appropriate for its needs. To ssimplify our discussions, we will assume for now a simple error handler
like the following one, which prints an error message, closes the Lua state, and exits from the whole
application:

#i ncl ude <stdarg. h>
#i ncl ude <stdi o. h>
#i ncl ude <stdlib. h>

void error (lua_State *L, const char *fnt, ...) {
va_|list argp;
va_start(argp, fnt);

Page 278 of 351

viprintf(stderr, argp);
va_end(argp);

| ua_cl ose(L);

exi t (EXI T_FAI LURE) ;

}

Later we will discuss more about error handling in the application code.

Because you can compile Lua both as C and as C++ code, | ua. h does not include this typical
adjustment code that is present in severa other C libraries:

#i fdef __ cpl uspl us
extern "C' {
#endi f

#i fdef _ cpl uspl us

}
#endi f

Therefore, if you have compiled Lua as C code (the most common case) and are using it in C++, you
must include | ua. h asfollows:

extern "C' {
#1 ncl ude <l ua. h>

}

A common trick isto create a header file| ua. hpp with the above code and to include thisnew filein
your C++ programs.

Programming in Lua

Page 279 of 351

Programming in Lua

Part IV. The C AP Chapter 24. An Overview of the C AP

24.2 - The Stack

We face two problems when trying to exchange values between Lua and C: the mismatch between a
dynamic and a static type system and the mismatch between automatic and manua memory
management.

In Lua, when wewritea[k] = v, bothk and v can have several different types (even a may have
different types, due to metatables). If we want to offer this operation in C, however, any set t abl e
function must have a fixed type. We would need dozens of different functions for this single operation
(one function for each combination of types for the three arguments).

We could solve this problem by declaring some kind of uniontypein C, letuscall it| ua_Val ue, that
could represent all Luavalues. Then, we could declareset t abl e as

void lua settable (lua Value a, lua Value k, lua Value v);

This solution has two drawbacks. First, it can be difficult to map such a complex type to other
languages; L ua has been designed to interface easily not only with C/C++, but also with Java, Fortran,
and the like. Second, Lua does garbage collection: If we keep aLuavauein aC variable, the Lua
engine has no way to know about this use; it may (wrongly) assume that this value is garbage and collect
it.

Therefore, the Lua API does not define anything likeal ua_Val ue type. Instead, it uses an abstract
stack to exchange values between Lua and C. Each dlot in this stack can hold any Lua value. Whenever
you want to ask for avalue from Lua (such as the value of a global variable), you call Lua, which pushes
the required value on the stack. Whenever you want to pass avaueto Lua, you first push the value on
the stack, and then you call Lua (which will pop the value). We still need a different function to push
each C type on the stack and a different function to get each value from the stack, but we avoid the
combinatorial explosion. Moreover, because this stack is managed by Lua, the garbage collector knows
which values C is using.

Nearly all functionsin the API use the stack. Aswe saw in our first example, | uaL_| oadbuf f er
leaves its result on the stack (either the compiled chunk or an error message); | ua_pcal | getsthe
function to be called from the stack and leaves any occasional error message there.

Lua manipulates this stack in astrict LIFO discipline (Last In, First Out; that is, aways through the top).

Page 280 of 351

When you call Lua, it only changes the top part of the stack. Y our C code has more freedom;
specifically, it can inspect any element inside the stack and even insert and delete elementsin any
arbitrary position.

Programming in Lua

Page 281 of 351

Programming in Lua

Part IV. The C AP Chapter 24. An Overview of the C AP

24.2.1 - Pushing Elements

The API has one push function for each Luatype that can be represented in C: | ua_pushni | for the
constant nil, | ua_pushnunber for numbers (doubl e),| ua_pushbool ean for booleans (integers,
inC), | ua_pushl stri ng for arbitrary strings (char *),and| ua_pushstri ng for zero-
terminated strings:

void lua_pushnil (lua_State *L);

voi d | ua_pushbool ean (lua_State *L, int bool);

voi d | ua_pushnunber (lua_State *L, double n);

void lua_pushlstring (lua_State *L, const char *s,
size_t length);

void lua_pushstring (lua_State *L, const char *s);

There are also functions to push C functions and userdata values on the stack; we will discuss them later.

Strings in Lua are not zero-terminated; in consequence, they can contain arbitrary binary data and rely
on an explicit length. The official function to push astring onto the stack is| ua_pushl stri ng,
which requires an explicit length as an argument. For zero-terminated strings, you can use also

| ua_pushstri ng, whichusesst r | en to supply the string length. Lua never keeps pointersto
external strings (or to any other object, except to C functions, which are always static). For any string
that it hasto keep, Lua either makes an internal copy or reuses one. Therefore, you can free or modify
your buffer as soon as these functions return.

Whenever you push an element onto the stack, it is your responsibility to ensure that the stack has space
for it. Remember, you are a C programmer now; Luawill not spoil you. When Lua starts and any time
that Lua calls C, the stack has at least 20 free slots (this constant is defined asLUA M NSTACK in| ua.
h). Thisis more than enough for most common uses, so usually we do not even think about that.
However, some tasks may need more stack space (e.g., for calling a function with avariable number of
arguments). In such cases, you may want to call

i nt |ua_checkstack (lua _State *L, int sz);

which checks whether the stack has enough space for your needs. (More about that later.)

Programming in Lua

Page 282 of 351

Programming in Lua

Part IV. The C AP Chapter 24. An Overview of the C AP

24.2.2 - Querying Elements

To refer to elements in the stack, the API usesindices. Thefirst element in the stack (that is, the element
that was pushed first) hasindex 1, the next one has index 2, and so on. We can also access elements
using the top of the stack as our reference, using negative indices. In that case, -1 refers to the element at
the top (that is, the last element pushed), -2 to the previous element, and so on. For instance, the call

| ua_tostring(L, -1) returnsthevaue at thetop of the stack asastring. Aswe will see, there are
several occasionswhen it is natural to index the stack from the bottom (that is, with positive indices) and
severa other occasions when the natural way is to use negative indices.

To check whether an element has a specific type, the API offers afamily of functions| ua_i s*, where
the* can beany Luatype. So, therearel ua_i snunber,l ua_i sstring,| ua_i st abl e, and the
like. All these functions have the same prototype:

int luais... (lua_State *L, int index);

Thel ua_i snunber and| ua_i sst ri ng functions do not check whether the value has that specific
type, but whether the value can be converted to that type. For instance, any number satisfies
| ua_isstring.

Thereisaso afunction | ua_t ype, which returns the type of an element in the stack. (Some of the

| ua_i s* functions are actually macros that use this function.) Each type is represented by a constant
defined in the header filel ua. h: LUA TNI L, LUA TBOOLEAN, LUA_ TNUMBER, LUA TSTRI NG
LUA TTABLE, LUA TFUNCTI ON, LUA TUSERDATA, and LUA TTHREAD. This function is mainly
used in conjunction with a switch statement. It is also useful when we need to check for strings and
numbers without coercions.

To get avaue from the stack, there arethel ua_t o* functions:

I nt | ua_t obool ean (lua_State *L, int index);
doubl e | ua_t onunber (lua_State *L, int index);
const char *lua_tostring (lua_State *L, int index);
size_t lua_strlen (lua_State *L, int index);

It is OK to call them even when the given element does not have the correct type. In this case,
| ua_t obool ean, | ua_t onunber and| ua_st rl en return zero and the others return NULL. The
zero isnot useful, but ANSI C provides us with no invalid numeric value that we could use to signal

Page 283 of 351

errors. For the other functions, however, we frequently do not need to use the corresponding | ua_i s*
function: Wejust call | ua_t o* and then test whether the result is not NULL.

Thel ua_t ost ri ng function returns a pointer to an internal copy of the string. Y ou cannot change it
(thereisaconst thereto remind you). Luaensures that this pointer isvalid aslong as the
corresponding value is in the stack. When a C function returns, Lua clears its stack; therefore, asarule,
you should never store pointers to Lua strings outside the function that got them.

Any string that | ua_t ost ri ng returns always has a zero at its end, but it can have other zeros inside
it. Thel ua_st r | en function returns the correct length of the string. In particular, assuming that the
value at the top of the stack is a string, the following assertions are always valid:

const char *s = lua_tostring(L, -1); /* any Lua string */
sizet | =lua_strlen(L, -1); /* its length */
assert(s[l] == "'\0");

assert(strlen(s) <=1);

Programming in Lua

Page 284 of 351

Programming in Lua

Part IV. The C AP Chapter 24. An Overview of the C AP

24.2.3 - Other Stack Operations

Besides the above functions, which interchange values between C and the stack, the API offers also the
following operations for generic stack manipulation:

I nt | ua_gettop (lua_State *L);

void lua_settop (lua_State *L, int index);
void lua_pushvalue (lua_State *L, int index);
void lua_ renove (lua_State *L, int index);
void lua_insert (lua_State *L, int index);
void lua_ replace (lua_State *L, int index);

Thel ua_get t op function returns the number of elementsin the stack, which is also the index of the
top element. Notice that a negative index - X is equivalent to the positiveindex gettop - x + 1.

| ua_set t op setsthetop (that is, the number of elements in the stack) to a specific value. If the
previous top was higher than the new one, the top values are discarded. Otherwise, the function pushes
nils on the stack to get the given size. Asaparticular case, | ua_sett op(L, 0) emptiesthe stack.
Y ou can also use negative indiceswith | ua_set t op; that will set the top element to the given index.
Using this facility, the API offers the following macro, which pops n elements from the stack:

#define lua_pop(L,n) lua_ settop(L, -(n)-1)

Thel ua_pushval ue function pushes on the top of the stack a copy of the element at the given index;
| ua_r enove removes the element at the given index, shifting down all elements on top of that
position to fill inthe gap; | ua_i nsert moves the top element into the given position, shifting up all
elements on top of that position to open space; finaly, | ua_r epl ace pops avaue from the top and
sets it as the value of the given index, without moving anything. Notice that the following operations
have no effect on the stack:

| ua_settop(L, -1); /* set top to its current value */
lua_insert(L, -1); /* nove top elenent to the top */

To illustrate the use of those functions, here is a useful helper function that dumps the entire content of
the stack:

static void stackDunp (lua_State *L) {

Page 285 of 351

int i;

int top = lua_gettop(L);

for (i =1;, i <=top; i++) { /* repeat for each level */
int t = lua_type(L, i);
switch (t) {

case LUA TSTRING [/* strings */
printf(" %"'", lua_tostring(L, i));
br eak;

case LUA TBOOLEAN. /* bool eans */
printf(lua_toboolean(L, i) ? "true" : "false");
br eak;

case LUA TNUMBER /* nunbers */
printf("%", lua_tonunber(L, i));
br eak;

default: [/* other values */
printf("%", lua_typenane(L, t));

br eak;
}
printf(" "); [/* put a separator */
}
printf("\n"); /* end the listing */

}

This function traverses the stack from bottom to top, printing each element according to its type. It prints
strings between quotes; for numbersit usesa %g~ format; for other values (tables, functions, etc.) it

printsonly their types (I ua_t ypenane converts atype code to atype name).
The following program uses st ack Dunp to further illustrate the manipulation of the APl stack:

#i ncl ude <stdi o. h>
#i ncl ude <l ua. h>

static void stackDunp (lua_State *L) {

}

int main (void) {
lua_State *L = | ua_open();

Page 286 of 351

| ua_pushbool ean(L, 1); |ua_pushnunber(L, 10);
| ua_pushnil (L); lua_pushstring(L, "hello");
stackDunp(L);

/[* true 10 nil “hello */

| ua_pushval ue(L, -4); stackDunp(L);
/[* true 10 nil “hello true */

| ua_replace(L, 3); stackDunp(L);
/[* true 10 true " hello */

| ua_settop(L, 6); stackDunp(L);
/[* true 10 true " hello" nil nil */

| ua_renove(L, -3); stackDunp(L);
/[* true 10 true nil nil */

| ua_settop(L, -5); stackDunp(L);
/* true */

| ua_cl ose(L);
return O;

Programming in Lua

Page 287 of 351

Programming in Lua

Part IV. The C AP Chapter 24. An Overview of the C AP

24.3 - Error Handling with the C API

Unlike C++ or Java, the C language does not offer an exception handling mechanism. To ameliorate this
difficulty, Luausesthe set j np facility from C, which results in a mechanism similar to exception
handling. (If you compile Luawith C++, it is not difficult to change the code so that it uses real
exceptions instead.)

All structures in Lua are dynamic: They grow as needed, and eventually shrink again when possible.
That means that the possibility of a memory-allocation failure is pervasive in Lua. Almost any operation
may face this eventuality. Instead of using error codes for each operation in its API, Lua uses exceptions
to signal these errors. That means that amost all API functions may throw an error (that is, call

| ongj np) instead of returning.

When we write library code (that is, C functions to be called from Lua), the use of long jumps is almost
as convenient as areal exception-handling facility, because Lua catches any occasional error. When we
write application code (that is, C code that calls Lua), however, we must provide away to catch those
errors.

Programming in Lua

Page 288 of 351

Programming in Lua

Part IV. The C AP Chapter 24. An Overview of the C AP

24.3.1 - Error Handling in Application Code

Typically, your application code runs unprotected. Because its code is not called by Lua, Lua cannot set
an appropriate context to catch errors (that is, it cannot call set j np). In such environments, when Lua

faces an error like "not enough memory", there is not much that it can do. It calls a panic function and, if
the function returns, exits the application. (Y ou can set your own panic function with the

| ua_at pani c function.)

Not all API functions throw exceptions. The functions| ua_open, | ua_cl ose, |l ua_pcal | , and

| ua_| oad are all safe. Moreover, most other functions can only throw an exception in case of memory-
alocation failure: For instance, | uaL_| oadf i | e failsif thereis not enough memory for a copy of the

file name. Several programs have nothing to do when they run out of memory, so they may ignore these

exceptions. For those programs, if Luaruns out of memory, it is OK to panic.

If you do not want your application to exit, even in case of a memory-allocation failure, then you must
run your code in protected mode. Most (or all) of your Lua code typically runs through a call to

| ua_pcal | ; therefore, it runsin protected mode. Even in case of memory-allocation failure,

| ua_pcal | returnsan error code, leaving the interpreter in a consistent state. If you also want to
protect all your C code that interacts with Lua, then you canusel ua_cpcal | . (Seethereference
manual for further details of thisfunction; seefilel ua. ¢ inthe Luadistribution for an example of its
use.)

Programming in Lua

Page 289 of 351

Programming in Lua

Part IV. The C AP Chapter 24. An Overview of the C AP

24.3.2 - Error Handling in Library Code

Luais a safe language. That means that, no matter what you write, no matter how wrong it is, you can
always understand the behavior of aprogram in terms of Luaitself. Moreover, errors are detected and
explained in terms of Lua, too. Y ou can contrast that with C, where the behavior of many wrong
programs can only be explained in terms of the underling hardware and error positions are given as a
program counter.

Whenever you add new C functionsto Lua, you can break that safety. For instance, afunction like
poke, which stores an arbitrary byte at an arbitrary memory address, can cause all sorts of memory
corruption. Y ou must strive to ensure that your add-ons are safe to Lua and provide good error handling.

Aswe discussed earlier, each C program has its own way to handle errors. When you write library
functions for Lua, however, there is a standard way to handle errors. Whenever a C function detects an
error, it smply calls| ua_er ror, (or better yet | uaL_er r or , which formats the error message and
thencallsl ua_error). Thel ua_err or function clears whatever needs to be cleared in Lua and
jumps back tothel ua_pcal | that originated that execution, passing along the error message.

Programming in Lua

Page 290 of 351

Programming in Lua

Part 1V. The C AP Chapter 25. Extending your Application

25 - Extending your Application

An important use of Luais as a configuration language. In this chapter, we will illustrate how we can
use Luato configure a program, starting with a simple example and evolving it to perform more
complex tasks.

Asour first task, let usimagine a simple configuration scenario: Your C program (let us cal it pp) hasa
window and you want the user to be able to specify the initial window size. Clearly, for such simple
tasks, there are several options simpler than using Lua, such as environment variables or files with name-
value pairs. But even using asimpletext file, you have to parse it somehow; so, you decide to use alLua
configuration file (that is, aplain text file that happens to be a Lua program). In its smplest form, this
file can contain something like the next lines:

-- configuration file for program pp'
-- define w ndow size

wi dth = 200

hei ght = 300

Now, you must use the Lua API to direct Luato parse thisfile, and then to get the values of the global
variableswi dt h and hei ght . The following function does the job:

#i ncl ude <l ua. h>
#i ncl ude <l aux!lib. h>
#i ncl ude <lualib. h>

void | oad (char *filenane, int *width, int *height) {
lua_State *L = | ua_open();
| uaopen_base(L);
| uaopen_io(L);
| uaopen_string(L);
| uaopen_mat h(L);

if (luaL_| oadfile(L, filenane) || lua_pcall (L, 0, 0, 0))

error(L, "cannot run configuration file: %",
| ua_tostring(L, -1));

Page 291 of 351

| ua_getgl obal (L, "w dth");
| ua_get gl obal (L, "height");
if (!lua_isnunmber(L, -2))

error(L, ""width'" should be a nunber\n");
if (!lua_isnunmber(L, -1))

error(L, " height' should be a nunber\n");
*Wwdth = (int)lua_tonunber(L, -2);
*height = (int)lua_tonunber(L, -1);

| ua_cl ose(L);

}

First, it opens the Lua package and |oads the standard libraries (they are optional, but usually it isagood
ideato have them around). Then, it uses| uaL_| oadf i | e to load the chunk from filef i | enanme and
callsl ua_pcal | torunit. Incase of errorsin any of these functions (e.g., a syntax error in your
configuration file), the call returns a non-zero error code and pushes the error message onto the stack. As
usual, our program uses| ua_t ost ri ng with index -1 to get the message from the top of the stack.
(Wedefined the er r or function in Section 24.1.)

After running the chunk, the program needs to get the values of the global variables. For that, it calls
twicel ua_get gl obal , whose single parameter (besides the omnipresent | ua_ St at e) isthe
variable name. Each call pushes the corresponding global value onto the top of the stack, so that the
width will be at index -2 and the height at index -1 (at the top). (Because the stack was previously
empty, you could also index from the bottom, using 1 from the first value and 2 from the second. By
indexing from the top, however, your code would work even if the stack was not empty.) Next, our
example uses| ua_i snunber to check whether each value is numeric. It then uses| ua_t onunber
to convert such valuesto doubl e and C doesthe coerciontoi nt . Finally, it closes the Lua state and
returns.

Isit worth using Lua? As | said before, for such simple tasks, a simple file with only two numbersin it
would be much easier to use than Lua. Even so, the use of Lua brings some advantages. First, Lua
handles all syntax details (and errors) for you; your configuration file can even have comments! Second,
the user is already able to do more complex configurations with it. For instance, the script may prompt
the user for some information, or it can query an environment variable to choose a proper size:

-- configuration file for program pp'

i f getenv("Dl SPLAY") == ":0.0" then
wi dt h = 300; height = 300

el se
wi dt h = 200; height = 200

end

Page 292 of 351

Even in such simple configuration scenarios, it is hard to anticipate what users will want; but aslong as
the script defines the two variables, your C application works without changes.

A final reason for using Luaisthat now it is easy to add new configuration facilities to your program;
this easiness creates an attitude that resultsin programs that are more flexible.

Programming in Lua

Page 293 of 351

Programming in Lua

Part 1V. The C AP Chapter 25. Extending your Application

25.1 - Table Manipulation

Let us adopt that attitude: Now, we want to configure a background color for the window, too. We will
assume that the final color specification is composed of three numbers, where each number is a color
component in RGB. Usually, in C, those numbers are integers in some range like [0,255]. In Lua,
because all numbers are real, we can use the more natural range [0,1].

A naive approach here isto ask the user to set each component in a different global variable:

-- configuration file for program pp
wi dth = 200
hei ght = 300
background red = 0.
background green =
background blue =0

0

3
0. 10

This approach has two drawbacks: It is too verbose (real programs may need dozens of different colors,
for window background, window foreground, menu background, etc.); and there is no way to predefine
common colors, so that, later, the user can ssimply write something like backgr ound = WHI TE. To
avoid these drawbacks, we will use atable to represent a color:

background = {r=0.30, g=0.10, b=0}

The use of tables gives more structure to the script; now it is easy for the user (or for the application) to
predefine colors for later use in the configuration file:

BLUE = {r=0, g=0, b=1}
béékground = BLUE

To get these valuesin C, we can do asfollows:
| ua_get gl obal (L, "background");

I f (!lua_istable(L, -1))
error(L, " background' is not a valid color table");

Page 294 of 351

red = getfield("r")
green = getfield("g");

bl ue = getfield("b");

Asusual, wefirst get the value of the global variable backgr ound and ensure that it isatable. Next,
weuseget fi el d to get each color component. This function is not part of the API; we must defineit,
asfollows:

#def i ne MAX_CCOLOR 255

/* assune that table is on the stack top */
int getfield (const char *key) {

}

int result;
| ua_pushstring(L, key);
| ua_gettable(L, -2); [/* get background[key] */
if (!lua_isnunber(L, -1))
error(L, "invalid conponent in background color");
result = (int)lua_tonunber(L, -1) * MAX COLOR;
| ua_pop(L, 1); /* renove nunber */
return result;

Again, we face the problem of polymorphism: There are potentially many versionsof get fi el d
functions, varying the key type, value type, error handling, etc. The Lua API offers asingle function,

| ua_gett abl e. It receives the position of the table in the stack, pops the key from the stack, and
pushes the corresponding value. Our privateget f i el d assumesthat the table is on the top of the stack;
so, after pushing thekey (I ua_pushst ri ng), thetable will be at index -2. Before returning,

get fi el d popsthe retrieved value from the stack, to leave the stack at the same level that it was
before the call.

We will extend our example alittle further and introduce color names for the user. The user can still use
color tables, but she can also use predefined names for the more common colors. To implement this
feature, we need a color table in our C application:

struct Col orTabl e {

char *nane;
unsi gned char red, green, blue;

colortable[] = {

{"VWH TE", MAX_COLOR, MAX COLOR, MAX COLOR},
{"RED", MAX_COLOR, 0, 0},

{" GREEN', 0, MAX COLOR, 0},

{" BLUE", 0, 0, MAX COLOR},

Page 295 of 351

{"BLACK", 0, 0, 0},

{ NULL, 0O, 0, 0} /* sentinel */
b

Our implementation will create global variables with the color names and initialize these variables using
color tables. The result isthe same asif the user had the following linesin her script:

VH TE

r
RED r

in 1
-

The only difference from these user-defined colors is that the application defines these colorsin C,
before running the user script.

To set the table fields, we define an auxiliary function, set f i el d; it pushesthe index and the field
value on the stack, and then calls| ua_set t abl e:

/* assune that table is at the top */

void setfield (const char *index, int value) {
| ua_pushstring(L, index);
| ua_pushnunber (L, (doubl e)val ue/ MAX COLOR);
| ua_settabl e(L, -3);

}

Like other API functions, | ua_set t abl e works for many different types, so it gets all its operands
from the stack. It receives the table index as an argument and pops the key and the value. The

set fi el d function assumes that before the call thetable is at the top of the stack (index -1); after
pushing the index and the value, the table will be at index -3.

Theset col or function definesasingle color. It must create a table, set the appropriate fields, and
assign this table to the corresponding global variable:

voi d setcol or (struct ColorTable *ct) {

| ua_newt abl e(L); /* creates a table */
setfield("r", ct->red); /* table.r = ct->r */
setfield("g", ct->green); /* table.g = ct->g */
setfield("b", ct->blue); /* table.b = ct->b */
| ua_set gl obal (ct->nane); /* “nane' = table */

}

Thel ua_newt abl e function creates an empty table and pushesit on the stack; theset fi el d calls

Page 296 of 351

set the table fields; finadlly, | ua_set gl obal popsthe table and setsit as the value of the global with
the given name.

With those previous functions, the following loop will register all colors in the application's global
environment:

int i = 0;
while (colortable[i].nanme = NULL)
set col or (&col ortabl e[i ++]);

Remember that the application must execute this loop before running the user script.

There is another option for implementing named colors. Instead of global variables, the user can denote
color names with strings, writing her settingsasbackgr ound = " BLUE". Therefore, backgr ound
can be either atable or a string. With this implementation, the application does not need to do anything
before running the user's script. Instead, it needs more work to get a color. When it gets the value of the
variable backgr ound, it hasto test whether the value has type string, and then look up the string in the
color table:

| ua_get gl obal (L, "background");
I f (lua_isstring(L, -1)) {

const char *name = lua_tostring(L, -1);
int i = 0;
while (colortable[i].name != NULL &&
strcnp(col ornanme, colortable[i].nanme) != 0)
| ++;
if (colortable[i].name == NULL) /* string not found? */
error(L, "invalid color nane (%)", colornane);

else { /* use colortable[i] */
red = colortable[i].red,
green = colortable[i].green;
blue = colortable[i].blue;
}
} else if (lua_istable(L, -1)) {
red = getfield("r");
green = getfield("g");
blue = getfield("b");
} else
error(L, "invalid value for "background ");

What is the best option? In C programs, the use of strings to denote optionsis not a good practice,
because the compiler cannot detect misspellings. In Lua, however, global variables do not need

Page 297 of 351

declarations, so L ua does not signal any error when a user misspells a color name. If the user writes

W TE instead of VHI TE, the backgr ound variable receives nil (the value of W TE, avariable not
initialized), and that is all that the application knows: that backgr ound isnil. Thereis no other
information about what is wrong. With strings, on the other hand, the value of backgr ound would be
the misspelled string; so, the application can add that information to the error message. The application
can also compare strings regardless of case, so that a user can write" whi t e", " WHI TE", or even
“Whi t e" . Moreover, if the user script is small and there are many colors, it may be odd to register
hundreds of colors (and to create hundreds of tables and global variables) only for the user to choose a
few. With strings, you avoid this overhead.

Programming in Lua

Page 298 of 351

Programming in Lua

Part 1V. The C AP Chapter 25. Extending your Application

25.2 - Calling Lua Functions

A great strength of Luaisthat a configuration file can define functions to be called by the application.
For instance, you can write an application to plot the graph of afunction and use Luato define the
functions to be plotted.

The API protocol to call afunction issimple: First, you push the function to be called; second, you push
the arguments to the call; then you use|l ua_pcal | to do the actual call; finally, you pop the results
from the stack.

As an example, let us assume that our configuration file has afunction like

function f (x, vy)
return (x*2 * math.sin(y))/(1 - x)
end

and you want to evaluate, inC,z = f(x, y) forgivenx andy. Assuming that you have already
opened the Lua library and run the configuration file, you can encapsulate this call in the following C
function:

/* call a function f' defined in Lua */
doubl e f (double x, double y) {
doubl e z;

/* push functions and argunents */

| ua_getgl obal (L, "f"); [/* function to be called */
| ua_pushnunber (L, x); /* push 1st argunent */

| ua_pushnunber (L, vy); /* push 2nd argunent */

/* do the call (2 argunents, 1 result) */
I f (lua_pcall (L, 2, 1, 0) !'=0)
error(L, "error running function "f': %",
|l ua_tostring(L, -1));

[* retrieve result */
i f (!lua_isnunber(L, -1))
error(L, "function "f' nust return a nunber");

Page 299 of 351

z = |lua_tonunber (L, -1);
| ua_pop(L, 1); [/* pop returned val ue */
return z;

}

Youcal l ua_pcal | with the number of arguments you are passing and the number of results you
want. The fourth argument indicates an error-handling function; we will discussit inamoment. Asina
Luaassignment, | ua_pcal | adjuststhe actual number of results to what you have asked for, pushing
nils or discarding extra values as needed. Before pushing theresults, | ua_pcal | removes from the
stack the function and its arguments. If a function returns multiple results, the first result is pushed first;
so, if there are n results, the first one will be at index -n and the last at index -1.

If thereisany error whilel ua_pcal | isrunning, | ua_pcal | returnsavalue different from zero;
moreover, it pushes the error message on the stack (but still pops the function and its arguments). Before
pushing the message, however, | ua_pcal | callsthe error handler function, if thereis one. To specify
an error handler function, we use the last argument of | ua_pcal | . A zero means no error handler
function; that is, the final error message is the original message. Otherwise, that argument should be the
index in the stack where the error handler function islocated. Notice that, in such cases, the handler
must be pushed in the stack before the function to be called and its arguments.

For normal errors, | ua_pcal | returnsthe error code LUA ERRRUN. Two special kinds of errors
deserve different codes, because they never run the error handler. The first kind is a memory allocation
error. For such errors, | ua_pcal | alwaysreturns LUA ERRMEM The second kind is an error while
Luaisrunning the error handler itself. In that caseit is of little use to call the error handler again, so

| ua_pcal | returnsimmediately with acode LUA ERRERR.

Programming in Lua

Page 300 of 351

Programming in Lua

Part 1V. The C AP Chapter 25. Extending your Application

25.3 - A Generic Call Function

As amore advanced example, we will build awrapper for calling Lua functions, using thevar ar g
facility in C. Our wrapper function (let uscall it cal | _va) receives the name of the function to be
called, a string describing the types of the arguments and results, then the list of arguments, and finally a
list of pointersto variablesto store the results; it handles al the details of the API. With this function,
we could write our previous example simply as

call _va("f", "dd>d", x, y, &2):

where the string " dd>d" means "two arguments of type double, one result of type double". This
descriptor can use the letters "d” for double, 'i * for integer, and "s” for strings; a ">~ separates
arguments from the results. If the function has no results, the ">" is optional.

#i ncl ude <stdarg. h>

void call _va (const char *func, const char *sig, ...) {
va |ist vl;
int narg, nres; [/* nunber of argunents and results */

va _start(vl, sig);
| ua_getgl obal (L, func); /* get function */

/* push argunents */

narg = 0;

while (*sig) { /* push argunents */
swtch (*sig++) {

case 'd': /* double argunent */
| ua_pushnunber (L, va_arg(vl, double));
br eak;
case 'i': /* int argunent */
| ua_pushnunber (L, va_arg(vl, int));
br eak;
case 's': [/* string argunent */

Page 301 of 351

| ua_pushstring(L, va_ arg(vl, char *));
br eak;

case '>':
got o endwhi | e;

defaul t:
error(L, "invalid option (%)", *(sig - 1));
}

nar g++;
| uaL_checkstack(L, 1, "too nmany argunents");
} endwhi |l e:

/* do the call */
nres = strlen(sig); /* nunber of expected results */
if (lua_pcall (L, narg, nres, 0) '=0) /* do the call */
error(L, "error running function "%': %"
func, lua_ tostring(L, -1));

/[* retrieve results */
nres = -nres; [/* stack index of first result */
while (*sig) { /* get results */

swtch (*sig++) {

case 'd': /* double result */
if (!lua_isnunber(L, nres))
error(L, "wong result type");

*va_arg(vl, double *) = lua_tonunber(L, nres);
br eak;
case 'i': /* int result */

if (!lua_isnunber(L, nres))
error(L, "wong result type");

*va_arg(vl, int *) = (int)lua_tonunber(L, nres);
br eak;
case 's': [/* string result */

if (!lua_isstring(L, nres))
error(L, "wong result type");

*va_arg(vl, const char **) = lua_tostring(L, nres);
br eak;

def aul t :

Page 302 of 351

error(L, "invalid option (%)", *(sig - 1));
}
nres++;
}
va_end(vl);

}

Despite its generality, this function follows the same steps of our previous example: It pushes the
function, pushes the arguments, does the call, and gets the results. Most of its code is straightforward,
but there are some subtleties. First, it does not need to check whether f unc isafunction; | ua_pcal |
will trigger any occasional error. Second, because it pushes an arbitrary number of arguments, it must
check the stack space. Third, because the function may return strings, cal | _va cannot pop the results
from the stack. It is up to the caller to pop them, after it finishes using occasional string results (or after
copying them to other buffers).

Programming in Lua

Page 303 of 351

Programming in Lua

Part IV. The C AP Chapter 26. Calling C from Lua

26 - Calling C from Lua

One of the basic means for extending Luaisfor the application to register new C functionsinto Lua.

When we say that Lua can call C functions, this does not mean that Lua can call any C function. (There
are packages that allow Luato call any C function, but they are neither portable nor robust.) As we saw
previously, when C calls a Luafunction, it must follow a simple protocol to pass the arguments and to
get the results. Similarly, for a C function to be called from Lua, it must follow a protocol to get its
arguments and to return its results. Moreover, for a C function to be called from Lua, we must register it,
that is, we must giveits address to Luain an appropriate way.

When Luacallsa C function, it uses the same kind of stack that C usesto call Lua. The C function gets
its arguments from the stack and pushes the results on the stack. To distinguish the results from other
values on the stack, the function returns (in C) the number of resultsit isleaving on the stack. An
important concept here is that the stack is not aglobal structure; each function hasits own private local
stack. When Lua calls a C function, the first argument will always be at index 1 of thislocal stack. Even
when a C function calls Lua code that calls the same (or another) C function again, each of these
invocations sees only its own private stack, with its first argument at index 1.

Programming in Lua

Page 304 of 351

Programming in Lua

Part IV. The C AP Chapter 26. Calling C from Lua

26.1 - C Functions

Asafirst example, let us see how to implement a simplified version of afunction that returns the sine of
agiven number (a more professional implementation should check whether its argument is a number):

static int | _sin (lua_State *L) {
double d = lua_tonunber(L, 1); /* get argunent */
| ua_pushnunber (L, sin(d)); /* push result */
return 1; /* nunber of results */

}

Any function registered with Lua must have this same prototype, defined as| ua_CFuncti oninl ua.
h:

typedef int (*lua CFunction) (lua_State *L);

From the point of view of C, a C function gets as its single argument the Lua state and returns (in C) an
integer with the number of valuesit isreturning (in Lua). Therefore, the function does not need to clear
the stack before pushing its results. After it returns, Lua automatically removes whatever isin the stack
below the results.

Before we can use this function from Lua, we must register it. We do this magic with

| ua_pushcfuncti on: It gets a pointer to a C function and creates avalue of type" f unct i on" to
represent this function inside Lua. A quick-and-dirty way totest| _si n isto put its code directly into
thefilel ua. ¢ and add the following linesright after the call to| ua_open:

| ua_pushcfunction(l, | _sin);
| ua_setgl obal (I, "nysin");

Thefirst line pushes a value of type function. The second line assigns it to the global variable nysi n.
After these modifications, you rebuild your Lua executable; then you can use the new function nysi n
in your Lua programs. In the next section, we will discuss better ways to link new C functions with Lua.

For amore professional sine function, we must check the type of its argument. Here, the auxiliary
library helpsus. Thel uaL_checknunber function checks whether a given argument is anumber: In
case of errors, it throws an informative error message; otherwise, it returns the number. The

Page 305 of 351

modification in our function is minimal:

static int | _sin (lua_State *L) {
doubl e d = lualL_checknunber (L, 1);
| ua_pushnunber (L, sin(d));
return 1; /* nunber of results */

}
With the above definition, if you call nysi n(" a'), you get the message
bad argunment #1 to "nysin' (nunber expected, got string)

Notice how | uaL_checknunber automaticaly fills the message with the argument number (1), the
function name (" nysi n"), the expected parameter type (" nunber "), and the actual parameter type
("string").

As amore complex example, let uswrite afunction that returns the contents of a given directory. Lua
does not provide this function in its standard libraries, because ANSI C does not have functions for this
job. Here, we will assume that we have a POSIX compliant system. Our function, di r , gets as argument
astring with the directory path and returns an array with the directory entries. For instance, acall di r
("/hone/l ua") mayreturnthetable{".", "..", "src", "bin", "lib"}.Incaseof
errors, the function returns nil plus a string with the error message.

#i ncl ude <dirent. h>
#i ncl ude <errno. h>

static int | _dir (lua_State *L) {
DIR *dir;
struct dirent *entry;
int i;
const char *path = luaL_checkstring(L, 1);

/* open directory */

dir = opendir(path);

if (dir == NULL) { /* error opening the directory? */
| ua_pushnil (L); /* return nil and ... */
| ua_pushstring(L, strerror(errno)); [/* error nessage */
return 2; /* nunber of results */

}

/|* create result table */
| ua_newt abl e(L);

Page 306 of 351

I = 1;

while ((entry = readdir(dir)) !'= NULL) {
| ua_pushnunber (L, i++); [/* push key */
| ua_pushstring(L, entry->d nane); /* push value */
| ua_settabl e(L, -3);

}

closedir(dir);
return 1; /* table is already on top */

}

Thel uaL_checkst ri ng function, from the auxiliary library, is the equivalent of
| ual_checknunber for strings.

(In extreme conditions, that implementation of I _di r may cause a small memory leak. Three of the
Luafunctionsit calls can fall dueto insufficient memory: | ua_new abl e, | ua_pushstri ng, and
| ua_set t abl e. If any of these callsfails, it will raise an error and interrupt | _di r, which therefore
will not call cl osedi r. Aswe discussed earlier, on most programs thisis not a big problem: If the
program runs out of memory, the best it can do isto shut down anyway. Nevertheless, in Chapter 29 we

will see an aternative implementation for adirectory function that avoids this problem.)

Programming in Lua

Page 307 of 351

Programming in Lua

Part IV. The C AP Chapter 26. Calling C from Lua

26.2 - C Libraries

A Lualibrary isachunk that defines several Lua functions and stores them in appropriate places,
typically asentriesin atable. A C library for Lua mimics this behavior. Besides the definition of its C
functions, it must also define a special function that corresponds to the main chunk of aLualibrary.
Once called, this function registers all C functions of the library and stores them in appropriate places.
Like a Luamain chunk, it also initializes anything else that needs initialization in the library.

Lua"sees' C functions through this registration process. Once a C function is represented and stored in
Lua, aLuaprogram callsit through direct reference to its address (which is what we give to Luawhen
we register afunction). In other words, Lua does not depend on a function name, package location, or
visibility rulesto call afunction, onceit isregistered. Typicaly, a C library has one single public
(extern) function, which is the function that opensthe library. All other functions may be private,
declared asst ati c inC.

When you extend Lua with C functions, it isagood idea to design your code as a C library, even when
you want to register only one C function: Sooner or later (usually sooner) you will need other functions.
Asusual, the auxiliary library offers a helper function for thisjob. Thel uaL_openl i b function
receives alist of C functions and their respective names and registers all of them inside a table with the
library name. As an example, suppose we want to create alibrary with thel _di r function that we
defined earlier. First, we must define the library functions:

static int | _dir (lua_State *L) {
/* as before */

}

Next, we declare an array with all functions and their respective names. This array has elements of type
| uaL_r eg, whichisastructure with two fields: a string and a function pointer.

static const struct luaL_reg nylib [] = {
{"dir", | _dir},

{NULL, NULL} /* sentinel */

b

In our example, thereis only one function (I _di r) to declare. Notice that the last pair in the array must
be{ NULL, NULL},tosigna itsend. Finally, we declareamain function, using | uaL_openl i b:

Page 308 of 351

i nt luaopen_nylib (lua_State *L) {
| uaL_openlib(L, "nylib", nylib, 0);
return 1;

}

The second argument to | uaL_openl i b isthe library name. This function creates (or reuses) atable
with the given name, and fills it with the pairs name-function specified by the array nyl i b. The

| uaL_openl i b function also allows us to register common upvalues for al functionsin alibrary. For
now, we are not using upvalues, so the last argument in the call is zero. When it returns,

| ual_openl i b leaves on the stack the table wherein it opened the library. Thel uaopen_nyli b
function returns 1 to return this value to Lua. (Aswith Lualibraries, this return is optional, because the
library is aready assigned to aglobal variable. Again, likein Lualibraries, it costs nothing, and may be
useful occasionally.)

After finishing the library, we must link it to the interpreter. The most convenient way to do it iswith the
dynamic linking facility, if your Luainterpreter supports this facility. (Remember the discussion about
dynamic linking in Section 8.2.) In this case, you must create a dynamic library with your code (a. dli |
filein Windows, a. so filein Linux). After that, you can load your library directly from within Lua,
with | oadl i b. The call

nylib = loadlib("fullname-of-your-1library", "luaopen_nylib")
transformsthel uaopen_nyl i b function into a C function inside Lua and assigns this function to

nyl i b. (That explainswhy | uaopen_nyl i b must have the same prototype as any other C function.)
Next, thecall myl i b() runsl uaopen_nyl i b, opening the library.

If your interpreter does not support dynamic linking, then you have to recompile Lua with your new
library. Besides that, you need some way to tell the stand-alone interpreter that it should open thislibrary
when it opens a new state. Some macros facilitate this task. First, you must create a header file (let us
call it myl i b. h) with the following content:

i nt |uaopen nylib (lua _State *L);
#define LUA EXTRALIBS { "nylib", luaopen nylib },

The first line declares the open function. The next line defines the macro LUA_EXTRALI BS asanew
entry in the array of functions that the interpreter calls when it creates anew state. (This array hastype
struct |ualL_reg[],soweneedto put anamethere)

To include this header file in the interpreter, you can define the macro LUA USERCONFI Gin your
compiler options. For acommand-line compiler, you typically must add an option like

Page 309 of 351

- DLUA_USERCONFI G=\ "nyl i b. h\ "

(The backslashes protect the quotes from the shell; those quotes are necessary in C when we specify an
include file name.) In an integrated devel opment environment, you must add something similar in the
project settings. Then, when you re-compilel ua. c, itincludesnyl i b. h, and therefore uses the new
definition of LUA_EXTRALI BSinthelist of librariesto open.

Programming in Lua

Page 310 of 351

Programming in Lua

Part 1V. The C AP Chapter 27. Techniques for Writing C Functions

27 - Techniques for Writing C Functions

Both the official API and the auxiliary library provide several mechanisms to help writing C functions.
In this chapter, we cover special mechanisms for array manipulation, for string manipulation, and for
storing Luavaluesin C.

Programming in Lua

Page 311 of 351

Programming in Lua

Part 1V. The C AP Chapter 27. Techniques for Writing C Functions

27.1 - Array Manipulation

"Array", in Lua, isjust aname for atable used in a specific way. We can manipulate arrays using the
same functions we use to manipulate tables, namely | ua_set t abl e and| ua_gett abl e. However,
contrary to the general philosophy of Lua, economy and simplicity, the API provides specia functions
for array manipulation. The reason for that is performance: Frequently we have an array access
operation inside the inner loop of an algorithm (e.g., sorting), so that any performance gain in this
operation can have a big impact on the overall performance of the function.

The functions that the API provides for array manipulation are

void lua rawgeti (lua_State *L, int index, int key);
void lua rawseti (lua_State *L, int index, int key);

Thedescription of | ua_rawgeti and| ua_rawseti isalittle confusing, asit involves two indices:
I ndex refersto where the tableisin the stack; key refersto where the element isin the table. The call
| ua_rawgeti (L, t, Kkey) isequivaent tothe sequence

| ua_pushnunber (L, key);
| ua_rawget (L, t);

whent ispositive (otherwise, you must compensate for the new item in the stack). The call
| ua_rawseti (L, t, key) (againfort positive) isequivalent to

| ua_pushnunber (L, key);
lua_insert(L, -2); [/* put "key' below previous value */
| ua_rawset (L, t);

Note that both functions use raw operations. They are faster and, anyway, tables used as arrays seldom
use metamethods.

As aconcrete example of the use of these functions, we could rewrite the loop body from our previous
| _dir function from

| ua_pushnunber (L, i++); [* key */
| ua_pushstring(L, entry->d _nane); [/* value */

Page 312 of 351

| ua_settabl e(L,
to

| ua_pushstring(L,
| ua_rawseti (L, -2,

As amore complete example, the following code implements the map function: It applies a given
function to al elements of an array, replacing each element by the result of the call.

I nt
int i, n;
/* 1st argunent nust
| uaL_checktype(L, 1,

/* 2nd argunent nust
| uaL_checktype(L, 2,

-3);

/* val ue */
/* set table at key

entry->d_nane);
| +4) ;

| map (lua_State *L) {

be a table (t) */
LUA TTABLE) ;

be a function (f) */
LUA TFUNCTI ON) ;

) i

*/

n = luaL_getn(L, 1); /* get size of table */
for (i=1; i<=n; i++) {

| ua_pushval ue(L, 2); /* push f */

| ua_rawgeti (L, 1, i); [/* push t[i] */

lua _call (L, 1, 1); [* call f(t[i]) */

| ua_rawseti (L, 1, i); [/* t[i] =result */
}
return O; /* no results */

}

This example introduces three new functions. Thel uaL_checkt ype function (from| auxl i b. h)
ensures that a given argument has a given type; otherwise, it raisesan error. Thel uaL_get n function
getsthe size of the array at the given index (t abl e. get n callsl uaL_get ntodoitsjob). The

| ua_cal | function does an unprotected call. Itissimilar tol ua_pcal |, but in case of errorsit
throws the error, instead of returning an error code. When you are writing the main code in an
application, you should not use| ua_cal | , because you want to catch any errors. When you are
writing functions, however, itisusually agood ideato usel ua_cal | ; if thereisan error, just leave it
to someone that cares about it.

Programming in Lua

Page 313 of 351

Programming in Lua

Part 1V. The C AP Chapter 27. Techniques for Writing C Functions

27.2 - String Manipulation

When a C function receives a string argument from Lua, there are only two rules that it must observe:
Not to pop the string from the stack while accessing it and never to modify the string.

Things get more demanding when a C function needs to create a string to return to Lua. Now, itisup to
the C code to take care of buffer allocation/deallocation, buffer overflow, and the like. Nevertheless, the
Lua API provides some functions to help with those tasks.

The standard API provides support for two of the most basic string operations: substring extraction and
string concatenation. To extract a substring, remember that the basic operation| ua_pushl stri ng
getsthe string length as an extra argument. Therefore, if you want to passto Luaasubstring of astring s
ranging from positioni toj (inclusive), al you havetodois

| ua_pushl string(L, s+i, j-i+1);

As an example, suppose you want a function that splits a string according to a given separator (asingle
character) and returns a table with the substrings. For instance, the call

split("hi,,there", ",")

should returnthetable{" hi ", "", "there"}.Wecouldwriteasimpleimplementation as follows.
It needs no extra buffers and puts no constraints on the size of the stringsit can handle.

static int | _split (lua_State *L) {

const char *s = lualL_checkstring(L, 1);
const char *sep = lualL_checkstring(L, 2);
const char *e;

int I = 1;

| ua_newtable(L); /* result */

/* repeat for each separator */

while ((e = strchr(s, *sep)) != NULL) {
| ua_pushlstring(L, s, e-s); [* push substring */
| ua_rawseti (L, -2, i++);

Page 314 of 351

s =e + 1, [/* skip separator */

}

/* push | ast substring */
| ua_pushstring(L, s);
lua_rawseti (L, -2, i);

return 1; /* return the table */

}

To concatenate strings, Lua provides a specific functioninits API, called | ua_concat . Itis
equivalent to the. . operator in Lua: It converts numbers to strings and triggers metamethods when
necessary. Moreover, it can concatenate more than two strings at once. Thecal | ua_concat (L, n)
will concatenate (and pop) the n values at the top of the stack and leave the result on the top.

Another helpful functionis| ua_pushf stri ng:

const char *lua_pushfstring (lua_State *L,
const char *fnt, ...);

It is somewhat similar to the C function spr i nt f , in that it creates a string according to aformat string
and some extra arguments. Unlikespr i nt f , however, you do not need to provide a buffer. Lua
dynamically creates the string for you, as large as it needsto be. There are no worries about buffer
overflow and the like. The function pushes the resulting string on the stack and returns a pointer to it.
Currently, this function accepts only the directives %®%(for the character “%), %s (for strings), % (for
integers), % (for Lua numbers, that is, doubles), and %& (accepts an integer and formatsit as a
character). It does not accept any options (such as width or precision).

Both| ua_concat andl ua_pushf st ri ng are useful when we want to concatenate only afew
strings. However, if we need to concatenate many strings (or characters) together, a one-by-one
approach can be quite inefficient, as we saw in Section 11.6. Instead, we can use the buffer facilities
provided by the auxiliary library. Auxlib implements these buffersin two levels. Thefirst level issimilar
to buffersin 1/O operations: It collects small strings (or individual characters) in alocal buffer and
passesthemto Lua(with| ua_pushl st ri ng) when the buffer fills up. The second level uses

| ua_concat and avariant of the stack algorithm that we saw in Section 11.6 to concatenate the results
of multiple buffer flushes.

To describe the buffer facilities from auxlib in more detail, let us see a simple example of itsuse. The
next code shows the implementation of st ri ng. upper, right fromthefilel strli b. c:

static int str_upper (lua State *L) {
size t |;

Page 315 of 351

size t i;
| ualL_Buffer b;

const char *s = luaL_checklstr(L, 1, &);
| uaL_buffinit(L, &b);
for (i=0; i<l; i++)

| uaL_put char (&b, toupper((unsigned char)(s[i])));
| uaL_pushresul t (&b);
return 1,

}

Thefirst step for using a buffer from auxlib isto declare avariable with type |l uaL_Buf f er , and then
toinitializeit withacall tol ualL_buf fi ni t . After theinitialization, the buffer keeps a copy of the
state L, so we do not need to pass it when calling other functions that manipulate the buffer. The macro
| uaL_put char putsasingle character into the buffer. Auxlib also offers| uaL_addl stri ng,to
put a string with an explicit length into the buffer, and | ualL_addst r i ng, to put a zero-terminated
string. Finally, | uaL_pushr esul t flushesthe buffer and leaves the final string on the top of the
stack. The prototypes of those functions are as follows:

void luaL _buffinit (lua_State *L, lualL_Buffer *B);

void luaL_putchar (lualL_ Buffer *B, char c);

void luaL_addl string (lualL_Buffer *B, const char *s,
size t |);

void lualL_addstring (luaL_Buffer *B, const char *s);

voi d | uaL_pushresult (lualL_ Buffer *B);

Using these functions, we do not have to worry about buffer allocation, overflows, and other such
details. Aswe saw, the concatenation algorithm is quite efficient. Thest r _upper function handles
huge strings (more than 1 MB) without any problem.

When you use the auxlib buffer, you have to worry about one detail. Asyou put things into the buffer, it
keeps some intermediate results in the Lua stack. Therefore, you cannot assume that the stack top will
remain where it was before you started using the buffer. Moreover, although you can use the stack for
other tasks while using a buffer (even to build another buffer), the push/pop count for these uses must be
balanced every time you access the buffer. There is one obvious situation where this restriction is too
severe, namely when you want to put into the buffer a string returned from Lua. In such cases, you
cannot pop the string before adding it to the buffer, because you should never use a string from Lua after
popping it from the stack; but also you cannot add the string to the buffer before popping it, because
then the stack would be in the wrong level. In other words, you cannot do something like this:

| uaL_addstring(&, lua tostring(L, 1)); /* BAD CODE */

Because thisis a common situation, auxlib provides a specia function to add the value on the top of the

Page 316 of 351

stack into the buffer:
voi d | uaL_addval ue (luaL_Buffer *B);

Of coursg, itisan error to call this function if the value on the top is not a string or a number.

Programming in Lua

Page 317 of 351

Programming in Lua

Part 1V. The C AP Chapter 27. Techniques for Writing C Functions

27.3 - Storing State in C Functions

Frequently, C functions need to keep some non-local data, that is, data that outlive their invocation. In C,
wetypicaly use global or static variables for that need. When you are programming library functions for
Lua, however, global and static variables are not a good approach. First, you cannot store a generic Lua
valuein a C variable. Second, alibrary that uses such variables cannot be used in multiple Lua states.

An aternative approach isto store such valuesinto Luaglobal variables. This approach solves the two
previous problems. Lua global variables store any Lua value and each independent state has its own
independent set of global variables. However, thisis not always a satisfactory solution, because Lua
code can tamper with those global variables and therefore compromise the integrity of C data. To avoid
this problem, Lua offers a separate table, called the registry, that C code can freely use, but Lua code
cannot access.

Programming in Lua

Page 318 of 351

Programming in Lua

Part 1V. The C AP Chapter 27. Techniques for Writing C Functions

27.3.1 - The Registry

The registry is always located at a pseudo-index, whose value is defined by LUA REG STRYI NDEX. A
pseudo-index is like an index into the stack, except that its associated value is not in the stack. Most
functionsin the Lua API that accept indices as arguments al so accept pseudo-indices---the exceptions
being those functions that manipulate the stack itself, such asl ua_r enove and| ua_i nsert . For
instance, to get avalue stored with key " Key" in the registry, you can use the following code:

| ua_pushstring(L, "Key");
| ua_gettabl e(L, LUA REG STRYI NDEX) ;

Theregistry isaregular Luatable. Assuch, you can index it with any Lua value but nil. However,
because al C libraries share the same registry, you must choose with care what values you use as keys,
to avoid collisions. A bulletproof method is to use as key the address of a static variable in your code:
The C link editor ensures that this key is unique among al libraries. To use this option, you need the
function| ua_pushl i ght user dat a, which pushes on the Lua stack a value representing aC
pointer. The following code shows how to store and retrieve a number from the registry using this
method:

/* variable with an uni que address */
static const char Key = 'k';

/* store a nunber */

| ua_pushli ghtuserdata(L, (void *)&Key); [/* push address */
| ua_pushnunber (L, nyNunber); /* push value */

/* registry[&Key] = nyNunber */

| ua_settabl e(L, LUA REGQ STRYI NDEX) ;

/* retrieve a nunber */

| ua_pushlightuserdata(L, (void *)&Key); [/* push address */
| ua_gettabl e(L, LUA REG STRYINDEX); /* retrieve value */
nmyNunber = lua_tonunber(L, -1); /* convert to nunber */

We will discuss light userdatain more detail in Section 28.5.

Of course, you can aso use strings as keys into the registry, aslong as you choose unique names. String
keys are particularly useful when you want to allow other independent libraries to access your data,

Page 319 of 351

because all they need to know is the key name. For such keys, there is no bulletproof method of
choosing names, but there are some good practices, such as avoiding common names and prefixing your
names with the library name or something likeit. Prefixeslikel ua or | ual i b are not good choices.
Another option isto use auniversal unique identifier (uui d), as most systems now have programs to
generate such identifiers (e.g., uui dgen in Linux). Anuui d isa 128-bit number (written in
hexadecimal to form a string) that is generated by a combination of the host IP address, a time stamp,
and arandom component, so that it is assuredly different from any other uui d.

Programming in Lua

Page 320 of 351

Programming in Lua

Part 1V. The C AP Chapter 27. Techniques for Writing C Functions

27.3.2 - References

Y ou should never use numbers as keysin the registry, because such keys are reserved for the reference
system. This system is composed by a couple of functionsin the auxiliary library that allow you to store
valuesin the registry without worrying about how to create unique names. (Actually, those functions can
act on any table, but they are typically used with the registry.)

The call
int r = lualL_ref(L, LUA REGQ STRYI NDEX) ;

pops a value from the stack, storesit into the registry with afresh integer key, and returns that key. We
call thiskey areference.

Asthe name implies, we use references mainly when we need to store areference to aLuavalueinside a
C structure. As we have seen, we should never store pointers to Lua strings outside the C function that
retrieved them. Moreover, Lua does not even offer pointers to other objects, such as tables or functions.
S0, we cannot refer to Lua objects through pointers. Instead, when we need such pointers, we create a
reference and storeit in C.

To push the value associated with areferencer onto the stack, we smply write
| ua_rawgeti (L, LUA REG STRYI NDEX, r);

Finally, to release both the value and the reference, we call
| ual_unref (L, LUA REAQ STRYI NDEX, r);

After thiscall, | uaL_r ef may returnthevaueinr again asanew reference.

The reference system treats nil as a special case. Whenever you call | uaL_r ef for anil value, it does
not create a new reference, but instead returns the constant reference LUA_REFNI L. The call

| uaL_unref (L, LUA REG STRYI NDEX, LUA REFNIL);

has no effect, whereas

Page 321 of 351

| ua_rawgeti (L, LUA REG STRYI NDEX, LUA REFNIL):

pushes anil, as expected.

The reference system also defines the constant LUA _NOREF, which is an integer different from any
valid reference. It isuseful to mark references asinvalid. Aswith LUA REFNI L, any attempt to retrieve

LUA NOREF returns nil and any attempt to release it has no effect.

Programming in Lua

Page 322 of 351

Programming in Lua

Part 1V. The C AP Chapter 27. Techniques for Writing C Functions

27.3.3 - Upvalues

While the registry implements global values, the upvalue mechanism implements an equivalent of C
static variables, which are visible only inside a particular function. Every time you create anew C
function in Lua, you can associate with it any number of upvalues; each upvalue can hold asingle Lua
value. Later, when the function is called, it has free access to any of its upvalues, using pseudo-indices.

We call this association of a C function with its upvalues a closure. Remember that, in Lua code, a
closure is afunction that uses local variables from an outer function. A C closure is a C approximation
to aLuaclosure. One interesting fact about closuresis that you can create different closures using the
same function code, but with different upvalues.

To see asimple example, let us create anewCount er function in C. (We aready defined this same
function in Lua, in Section 6.1.) This function is afactory function: It returns a new counter function

each time it is called. Although all counters share the same C code, each one keeps its own independent
counter. The factory function islike this:

/* forward decl aration */
static int counter (lua_State *L);

I nt newCounter (lua_State *L) {
| ua_pushnunber (L, 0);
| ua_pushccl osure(L, &counter, 1);
return 1;

}

The key function hereisl ua_pushccl osur e, which creates anew closure. Its second argument is
the base function (count er , in the example) and the third is the number of upvalues (1, in the
example). Before creating a new closure, we must push on the stack the initial values for its upvalues. In
our example, we push the number 0 as the initial value for the single upvalue. As expected,

| ua_pushccl osur e leavesthe new closure on the stack, so the closure is ready to be returned as the
result of newCount er .

Now, let us see the definition of count er :

static int counter (lua_State *L) {
doubl e val = lua_tonunber (L, |ua_upval uei ndex(1));

Page 323 of 351

| ua_pushnunber (L, ++val); [/* new value */

| ua_pushval ue(L, -1); [/* duplicate it */

| ua_replace(L, |ua_ upval ueindex(1l)); [/* update upval ue */
return 1; /* return new val ue */

}

Here, the key functionisl ua_upval uei ndex (which isactually a macro), which produces the
pseudo-index of an upvalue. Again, this pseudo-index is like any stack index, except that it does not live
in the stack. The expression | ua_upval uei ndex(1) refersto theindex of thefirst upvaue of the
function. So, thel ua_t onunber infunction count er retrievesthe current value of the first (and
only) upvalue as a number. Then, function count er pushesthe new value ++val , makes acopy of it,
and uses one of the copies to replace the upvalue with the new value. Finally, it returns the other copy as
its return value.

Unlike Lua closures, C closures cannot share upvalues: Each closure has its own independent set.
However, we can set the upvalues of different functionsto refer to a common table, so that thistable
becomes a common place where those functions can share data.

Programming in Lua

Page 324 of 351

Programming in Lua

Part 1V. The C AP Chapter 28. User-Defined Typesin C

28 - User-Defined Types in C

In the previous chapter, we saw how to extend Luawith new functions written in C. Now, we will see
how to extend Luawith new types written in C. We will start with asmall example that we will extend
through the chapter with metamethods and other goodies.

Our example is aquite ssmple type: numeric arrays. The main motivation for this exampleisthat it does
not involve complex algorithms, so we can concentrate on API issues. Despite its simplicity, thistypeis
useful for some applications. Usually, we do not need external arraysin Lua; hash tables do the job quite
well. But hash tables can be memory-hungry for huge arrays, as for each entry they must store a generic
value, alink address, plus some extra space to grow. A straight implementation in C, where we store the
numeric values without any extra space, uses less than 50% of the memory used by a hash table.

We will represent our arrays with the following structure:

t ypedef struct NumArray {

I nt size;

doubl e values[1l]; [/* variable part */
} NumArray;

We declarethe array val ues with size 1 only as a placeholder, because C does not allow an array with
size O0; we will define the actual size by the space we allocate for the array. For an array with n elements,
weneedsi zeof (NumArray) + (n-1)*sizeof (doubl e) bytes. (We subtract onefromn
because the original structure already includes space for one element.)

Programming in Lua

Page 325 of 351

Programming in Lua

Part 1V. The C AP Chapter 28. User-Defined Typesin C

28.1 - Userdata

Our first concern is how to represent array valuesin Lua. Lua provides a basic type specifically for this:
userdata. A userdatum offers araw memory area with no predefined operationsin Lua.

The Lua API offers the following function to create a userdatum:
void *lua newuserdata (lua _State *L, size_ t size);

Thel ua_newuser dat a function allocates a block of memory with the given size, pushes the
corresponding userdatum on the stack, and returns the block address. If for some reason you need to
allocate memory by other means, it is very easy to create a userdatum with the size of a pointer and to
store there a pointer to the real memory block. We will see examples of this technique in the next
chapter.

Using | ua_newuser dat a, the function that creates new arraysis as follows:

static int newarray (lua _State *L) {
int n = lualL_checkint(L, 1);
size t nbytes = sizeof (NumArray) + (n - 1)*sizeof (doubl e);
NumArray *a = (NumArray *)lua_newuserdata(L, nbytes);
a->size = n;
return 1; /* new userdatumis already on the stack */

}

(Thel uaL_checki nt functionisavariant of | uaL_checknunber for integers.) Once newar r ay
Isregistered in Lua, you can create new arrays with a statement likea = array. new 1000).

To storean entry, wewill useacall likearray. set (array, index, val ue).Later wewill see
how to use metatables to support the more conventional syntax ar r ay[i ndex] = val ue. For both
notations, the underlying function is the same. It assumes that indices start at 1, asisusual in Lua.

static int setarray (lua_State *L) {
NumArray *a = (NumArray *)lua_touserdata(L, 1);
int index = luaL_checkint(L, 2);
doubl e val ue = lualL_checknunber (L, 3);

Page 326 of 351

| uaL_argcheck(L, a !'= NULL, 1, " array' expected");

| uaL_argcheck(L, 1 <= index && index <= a->size, 2,
"index out of range");

a- >val ues[i ndex- 1] = val ue;
return O;

}

Thel uaL_ar gcheck function checks a given condition, raising an error if necessary. S0, if we call
set ar r ay with abad argument, we get an €l ucidative error message:

array.set(a, 11, 0)
--> stdin: 1. bad argunent #1 to " set

("array' expected)
The next function retrieves an entry:

static int getarray (lua_State *L) {
NumArray *a = (NumArray *)lua_touserdata(L, 1);
I nt index = luaL_checkint(L, 2);

| uaL_ar gcheck(L, a !'= NULL, 1, " array' expected");

| uaL_argcheck(L, 1 <= index && index <= a->size, 2,
"I ndex out of range");

| ua_pushnunber (L, a->val ues[index-1]);
return 1;

}

We define another function to retrieve the size of an array:

static int getsize (lua_State *L) {
NumArray *a = (NumArray *)lua_touserdata(L, 1);
| uaL_argcheck(L, a !'= NULL, 1, " array' expected");
| ua_pushnunber (L, a->size);
return 1;

}

Finally, we need some extra code to initialize our library:

Page 327 of 351

static const struct luaL reg arraylib [] = {
{"new', newarray},

{"set", setarray},

{"get", getarray},

{"size", getsize},

{ NULL, NULL}

b

i nt luaopen_array (lua_State *L) {

| uaL_openlib(L, "array", arraylib, 0);
return 1;

}

Again, weusel uaL_openl i b, from the auxiliary library. It creates a table with the given name
("array", inour example) and fills it with the pairs name-function specified by thearray ar r ayl i b.

After opening the library, we are ready to use our new typein Lua:

a = array. new 1000)

print(a) --> userdata: 0x8064d48
print(array.size(a)) --> 1000
for i=1,1000 do
array.set(a, i, 1/1)
end

print(array.get(a, 10)) --> 0.1

Running this implementation on a Pentium/Linux, an array with 100K elements takes 800 KB of
memory, as expected; an equivalent L ua table needs more than 1.5 MB.

Programming in Lua

Page 328 of 351

Programming in Lua

Part 1V. The C AP Chapter 28. User-Defined Typesin C

28.2 - Metatables

Our current implementation has a major security hole. Suppose the user writes something likear r ay.
set(io.stdin, 1, 0).Thevaueini o. st di nisauserdatum with apointer to a stream

(FI LE*). Because it isauserdatum, ar r ay. set will gladly accept it as avalid argument; the probable
result will be a memory corruption (with luck you can get an index-out-of-range error instead). Such
behavior is unacceptable for any Lua library. No matter how you use a C library, it should not corrupt C
data or produce a core dump from Lua.

To distinguish arrays from other userdata, we create a unique metatable for it. (Remember that userdata
can also have metatables.) Then, every time we create an array, we mark it with this metatable; and
every time we get an array, we check whether it has the right metatable. Because L ua code cannot
change the metatabl e of a userdatum, it cannot fake our code.

We aso need a place to store this new metatable, so that we can access it to create new arrays and to
check whether a given userdatum is an array. Aswe saw earlier, there are two common options for
storing the metatable: in the registry, or as an upvalue for the functionsin the library. It is customary, in
Lua, to register any new C type into the registry, using a type name as the index and the metatable as the
value. Aswith any other registry index, we must choose atype name with care, to avoid clashes. We
will call thisnew type" LuaBook. array".

Asusual, the auxiliary library offers some functions to help us here. The new auxiliary functions we will
use are

I nt | uaL_newnetatable (lua_State *L, const char *tnane);
void lualL _getnetatable (lua_State *L, const char *tnane);
void *lualL_checkudata (lua_State *L, int index,

const char *tnane);

Thel uaL_newnet at abl e function creates a new table (to be used as a metatable), leaves the new
table in the top of the stack, and associates the table and the given name in the registry. It does a dual
association: It uses the name as a key to the table and the table as a key to the name. (This dual
association allows faster implementations for the other two functions.) Thel uaL_get net at abl e
function retrieves the metatable associated with t nane from the registry. Finally,

| uaL_checkudat a checks whether the object at the given stack position is a userdatum with a
metatable that matches the given name. It returns NULL if the object does not have the correct metatable
(or if it isnot a userdata); otherwise, it returns the userdata address.

Page 329 of 351

Now we can start our implementation. The first step it to change the function that opensthe library. The
new version must create atable to be used as the metatable for arrays:

I nt luaopen_array (lua_State *L) {
| uaL_newnet at abl e(L, "LuaBook.array");
| uaL_openlib(L, "array", arraylib, 0);
return 1;

}

The next step isto change newar r ay so that it sets this metatable in all arraysthat it creates:

static int newarray (lua_State *L) {
int n = lualL_checkint(L, 1);
size t nbytes = sizeof (NumArray) + (n - 1)*sizeof (doubl e);
NumArray *a = (NumArray *)lua_newuserdata(L, nbytes);

| uaL_get net at abl e(L, "LuaBook.array");
| ua_set net at abl e(L, -2);

a->size = n;
return 1; /* new userdatumis already on the stack */

}

Thel ua_set net at abl e function pops atable from the stack and sets it as the metatable of the
object at the given index. In our case, this object is the new userdatum.

Finally, set arr ay, get arr ay, and get si ze have to check whether they got avalid array as their
first argument. Because we want to raise an error in case of wrong arguments, we define the following
auxiliary function:

static NumArray *checkarray (lua_State *L) {
void *ud = luaL_checkudata(L, 1, "LuaBook.array");
| uaL_argcheck(L, ud !'= NULL, 1, " array' expected");
return (NumArray *)ud;

}

Using checkar r ay, the new definition for get si ze is straightforward:

static int getsize (lua_State *L) {
NumArray *a = checkarray(L);
| ua_pushnunber (L, a->size),;

Page 330 of 351

return 1;

}

Because set arr ay and get ar r ay also share code to check the index as their second argument, we
factor out their common parts in the following function:

static double *getelem (lua_State *L) {
NumArray *a = checkarray(L);
i nt index = lualL _checkint(L, 2);

| ualL_argcheck(L, 1 <= index && i ndex <= a->size, 2,
"I ndex out of range");

[* return el enent address */
return &a->val ues[index - 1];

}

After the definition of get el em set arr ay and get ar r ay are straightforward:

static int setarray (lua_State *L) {

doubl e newal ue = lualL_checknunber (L, 3);
*getelenmL) = newal ue;
return O;

}

static int getarray (lua_State *L) {
| ua_pushnunber (L, *getelen(lL));
return 1;

}
Now, if you try something likear ray. get (i 0. stdi n, 10),youwill get aproper error message:

error: bad argunment #1 to getarray' (array' expected)

Programming in Lua

Page 331 of 351

Programming in Lua

Part 1V. The C AP Chapter 28. User-Defined Typesin C

28.3 - Object-Oriented Access

Our next step isto transform our new type into an object, so that we can operate on its instances using
the usual object-oriented syntax, such as

a = array. new 1000)

print(a:size()) --> 1000
a:set (10, 3.4)
print(a:get(10)) --> 3.4

Remember that a: si ze() isequivaenttoa. si ze(a) . Therefore, we have to arrange for the
expression a. si ze to return our get si ze function. The key mechanism hereisthe i ndex
metamethod. For tables, this metamethod is called whenever Lua cannot find a value for a given key.
For userdata, it is called in every access, because userdata have no keys at all.

Assume that we run the following code:

| ocal netaarray = getnetatable(array. newl))
metaarray. _index = netaarray

net aarray.set = array. set

net aarray. get = array. get

nmet aarray. size = array. Si ze

In the first line, we create an array only to get its metatable, which we assign to net aar r ay. (We
cannot set the metatable of a userdata from Lua, but we can get its metatable without restrictions.) Then
weset net aarray. i ndex tonet aarr ay. When we evaluatea. si ze, Lua cannot find the key
"si ze" inobject a, because the object is a userdatum. Therefore, Luawill try to get this value from the
field i ndex of the metatable of a, which happensto be net aar r ay itself. But net aarr ay.

Si zeisarray. size,soa. size(a) resultsinarray. si ze(a), aswe wanted.

Of course, we can write the same thing in C. We can do even better: Now that arrays are objects, with
their own operations, we do not need to have those operationsin the table ar r ay anymore. The only
function that our library still hasto export is new, to create new arrays. All other operations come only
as methods. The C code can register them directly as such.

The operations get si ze, get arr ay, and set ar r ay do not change from our previous approach.

Page 332 of 351

What will change is how we register them. That is, we have to change the function that opens the
library. First, we need two separate function lists, one for regular functions and one for methods:

static const struct luaL_reg arraylib f []
{"new', newarray},
{ NULL, NULL}

b

{

static const struct luaL_reg arraylib_m[] = {
{"set", setarray},

{"get", getarray},

{"size", getsize},

{ NULL, NULL}

}

The new version of | uaopen_ar r ay, the function that opens the library, has to create the metatable,
toassignittoitsown i ndex field, to register all methods there, and to create and fill thear r ay
table:

i nt luaopen_array (lua_State *L) {
| uaL_newnet at abl e(L, "LuaBook.array");

| ua_pushstring(L, " __index");
| ua_pushval ue(L, -2); [/* pushes the netatable */
| ua_settable(L, -3); /* netatable. index = netatable */

| uaL_openlib(L, NULL, arraylib m 0);

| uaL_openlib(L, "array", arraylib f, 0);
return 1;

}

Here we use another feature from | uaL_openl i b. Inthefirst call, when we pass NULL asthelibrary
name, | uaL_openl i b does not create any table to pack the functions; instead, it assumes that the
package table is on the stack, below any occasional upvalues. In this example, the package table isthe
metatable itself, which iswhere| uaL_openl i b will put the methods. The next call to

| uaL_openl i b worksregularly: It creates a new table with the given name (ar r ay) and registers the
given functions there (only new, in this case).

Asafina touch, wewill adda__t ost ri ng method to our new type, so that pri nt (a) prints
ar r ay plusthe size of the array inside parentheses (for instance, ar r ay(1000)). The function itself
is here:

Page 333 of 351

int array2string (lua_State *L) {
NumArray *a = checkarray(L);
| ua_pushfstring(L, "array(%)", a->size);
return 1;

}

Thel ua_pushf st ri ng function formats the string and leaves it on the stack top. We also have to
addarray2stringtothelistarrayl i b_mtoincludeit in the metatable of array objects:

static const struct luaL reg arraylib m[] = {
{" tostring", array2string},
{"set", setarray},

};...

Programming in Lua

Page 334 of 351

Programming in Lua

Part 1V. The C AP Chapter 28. User-Defined Typesin C

28.4 - Array Access

An dternative to the object-oriented notation is to use aregular array notation to access our arrays.
Instead of writing a: get (i), wecould ssimply writea[i] . For our example, thisis easy to do,
because our functionsset ar r ay and get ar r ay already receive their arguments in the order that they
are given to the respective metamethods. A quick solution is to define those metamethods right into our
Lua code:

| ocal netaarray = getnetatable(newarray(1))
netaarray. _index = array. get
netaarray. _new ndex = array. set

(We must run that code on the original implementation for arrays, without the modifications for object-
oriented access.) That is all we need to use the usual syntax:

a = array. new 1000)
a[10] = 3.4 -- setarray
print(a[10]) -- getarray --> 3.4

If we prefer, we can register those metamethods in our C code. For that, we change again our
initialization function:

I nt | uaopen_array (lua_State *L) {
| ualL_newnet at abl e(L, "LuaBook.array");
| uaL_openl i b(L, "array", arraylib, 0);

/* now the stack has the netatable at index 1 and
“array' at index 2 */

| ua_pushstring(L, "__index");

| ua_pushstring(L, "get");

| ua_gettable(L, 2); [/* get array.get */

| ua_settable(L, 1); /* netatable. index = array.get */

| ua_pushstring(L, "__new ndex");

| ua_pushstring(L, "set");

| ua_gettable(L, 2); /* get array.set */

| ua_settable(L, 1); /* netatable. new ndex = array.set */

Page 335 of 351

return O;

Programming in Lua

Page 336 of 351

Programming in Lua

Part 1V. The C AP Chapter 28. User-Defined Typesin C

28.5 - Light Userdata

The userdata that we have been using until now is called full userdata. L ua offers another kind of
userdata, called light userdata.

A light userdatum is avalue that represents a C pointer (that is, avoi d * value). Becauseit isavalue,
we do not create them (in the same way that we do not create numbers). To put a light userdatum into
the stack, weusel ua_pushl i ght user dat a:

void lua_pushlightuserdata (lua_State *L, void *p);

Despite their common name, light userdata are quite different from full userdata. Light userdata are not
buffers, but single pointers. They have no metatables. Like numbers, light userdata do not need to be
managed by the garbage collector (and are not).

Some people use light userdata as a cheap alternative to full userdata. Thisisnot atypical use, however.
First, with light userdata you have to manage memory by yourself, because they are not subject to
garbage collection. Second, despite the name, full userdata are inexpensive, too. They add little overhead
compared to amal | oc for the given memory size.

Thereal use of light userdata comes from equality. Asafull userdatais an object, it isonly equal to
itself. A light userdata, on the other hand, represents a C pointer value. As such, it isequal to any
userdata that represents the same pointer. Therefore, we can use light userdata to find C objectsinside
Lua

As atypical example, suppose we are implementing a binding between Lua and a Window system. In
this binding, we use full userdata to represent windows. (Each userdatum may contain the whole
window structure or only a pointer to awindow created by the system.) When there isan event inside a
window (e.g., amouse click), the system calls a specific callback, identifying the window by its address.
To pass the callback to Lua, we must find the userdata that represents the given window. To find this
userdata, we can keep atable where the indices are light userdata with the window addresses and the
values are the full userdata that represent the windows in Lua. Once we have a window address, we push
it into the API stack as alight userdata and use the userdata as an index into that table. (Note that the
table should have weak values. Otherwise, those full userdata would never be collected.)

Page 337 of 351

Programming in Lua

Part 1V. The C AP Chapter 29. Managing Resources

29 - Managing Resources

In our implementation of arrays in the previous chapter, we did not need to worry about managing
resources. They need only memory. Each userdatum representing an array has its own memory, which is
managed by Lua. When an array becomes garbage (that is, inaccessible by the program), Lua eventually
collectsit and frees its memory.

Lifeisnot always that easy. Sometimes, an object needs other resources besides raw memory, such as
file descriptors, window handles, and the like. (Often these resources are just memory too, but managed
by some other part of the system). In such cases, when the object becomes garbage and is collected,
somehow those other resources must be released too. Several OO languages provide a specific
mechanism (called finalizer or destructor) for that need. Lua providesfinalizersin the form of the _ gc
metamethod. This metamethod only works for userdata values. When a userdatum is about to be
collected and its metatable hasa ___ gc field, Lua calls the value of thisfield (which should be a
function), passing as an argument the userdatum itself. This function can then release any resource
associated with that userdatum.

To illustrate the use of this metamethod and of the API as awhole, in this chapter we will develop two
bindings from Luato external facilities. The first example is another implementation for a function to
traverse adirectory. The second (and more substantial) example is a binding to Expat, an open source
XML parser.

Programming in Lua

Page 338 of 351

Programming in Lua

Part 1V. The C AP Chapter 29. Managing Resources

29.1 - A Directory lterator

Previously, we implemented adi r function that returned atable with all files from a given directory.
Our new implementation will return an iterator that returns a new entry each time it is called. With this
new implementation, we will be able to traverse a directory with aloop like this one:

for fnane in dir(".") do print(fnane) end

To iterate over adirectory, in C, we need a DI R structure. Instances of DI R are created by opendi r
and must be explicitly released by acall to cl osedi r . Our previous implementation of di r kept its
DI Rinstance as alocal variable and closed that instance after retrieving the last file name. Our new
implementation cannot keep this DI Rinstance in alocal variable, because it must query this value over
severa calls. Moreover, it cannot close the directory only after retrieving the last name; if the program
breaks the loop, the iterator will never retrieve thislast name. Therefore, to make sure that the DI R
instance is always released, we store its address in a userdatum and usethe _ gc metamethod of this
userdatum to release the directory structure.

Despite its central role in our implementation, this userdatum representing a directory does not need to
bevisiblefrom Lua. Thedi r function returns an iterator function; thisiswhat Lua sees. The directory
may be an upvalue of the iterator function. As such, the iterator function has direct access to this
structure, but Lua code has not (and does not need to).

In all, we need three C functions. First, we need the di r function, afactory that Lua callsto create
iterators; it must open a DI R structure and put it as an upvalue of the iterator function. Second, we need
the iterator function. Third, we need the __gc metamethod, which closesa DI R structure. As usual, we
also need an extra function to make initial arrangements, such as to create a metatable for directories and
to initialize this metatable.

Let us start our code with thedi r function:

#i ncl ude <dirent. h>
#i ncl ude <errno. h>

[* forward declaration for the iterator function */
static int dir_iter (lua_State *L);

static int | _dir (lua_State *L) {

Page 339 of 351

const char *path = luaL_checkstring(L, 1);

/|* create a userdatumto store a DIR address */
DR **d = (DIR **)| ua_newuserdata(L, sizeof (DIR *));

/* set its netatable */
| uaL_get net at abl e(L, "LuaBook.dir");
| ua_set net at abl e(L, -2);

/* try to open the given directory */
*d = opendir(path);
If (*d == NULL) /* error opening the directory? */
| ualL_error (L, "cannot open %:. %", path,
strerror(errno));

/* creates and returns the iterator function
(its sole upvalue, the directory userdatum
Is already on the stack top */

| ua_pushccl osure(L, dir_iter, 1);

return 1;

}

A subtle point hereis that we must create the userdatum before opening the directory. If we first open
the directory, and thenthe call to| ua_newuser dat a raises an error, we lose the DI R structure. With
the correct order, the DI R structure, once created, is immediately associated with the userdatum;
whatever happens after that, the gc metamethod will eventually release the structure.

The next function is the iterator itself:

static int dir_iter (lua_State *L) {
DR *d = *(DIR **)| ua_touserdata(L, |ua_ upval uei ndex(1));
struct dirent *entry;
if ((entry = readdir(d)) !'= NULL) {
| ua_pushstring(L, entry->d _nane);
return 1;

}

else return O; /* no nore values to return */

}

The _ gc metamethod closes adirectory, but it must take one precaution: Because we create the
userdatum before opening the directory, this userdatum will be collected whatever the result of
opendi r. If opendi r fails, there will be nothing to close.

Page 340 of 351

static int dir_gc (lua_State *L) {
DR *d = *(DIR **)| ua_touserdata(L, 1);
I f (d) closedir(d);
return O;

}

Finally, thereis the function that opens this one-function library:

i nt |uaopen_dir (lua_State *L) {
| uaL_newnet at abl e(L, "LuaBook.dir");

/* set its __gc field */

| ua_pushstring(L, " __gc");

| ua_pushcfunction(L, dir_gc);
| ua_settabl e(L, -3);

/* register the "dir' function */
| ua_pushcfunction(L, | _dir);
| ua_setglobal (L, "dir");

return O;

}

This whole example has an interesting subtlety. At first, it may seem that di r _gc should check
whether its argument is a directory. Otherwise, amalicious user could call it with another kind of
userdata (afile, for instance), with disastrous consequences. However, thereis no way for alLua
program to access this function: It is stored only in the metatable of directories and Lua programs never
access those directories.

Programming in Lua

Page 341 of 351

Programming in Lua

Part 1V. The C AP Chapter 29. Managing Resources

29.2 - An XML Parser

Now we will ook at a simplified implementation of | xp, abinding between Lua and Expat. Expat is an
open source XML 1.0 parser written in C. It implements SAX, the Smple API for XML. SAX isan
event-based API. That meansthat a SAX parser reads an XML document and, as it goes, reports to the
application what it finds, through callbacks. For instance, if we instruct Expat to parse a string like

<tag cap="5">hi </tag>
it will generate three events: a start-element event, when it reads the substring " <t ag cap="5">"; a
text event (also called a character data event), when it reads™ hi " ; and an end-element event, when it
reads" </ t ag>". Each of these events calls an appropriate callback handler in the application.

Here we will not cover the entire Expat library. We will concentrate only on those parts that illustrate
new techniques for interacting with Lua. It is easy to add bells and whistles |ater, after we have
implemented this core functionality. Although Expat handles more than a dozen different events, we will
consider only the three events that we saw in the previous example (start elements, end elements, and
text). The part of the Expat API that we need for this example is small. First, we need functions to create
and destroy an Expat parser:

#i ncl ude <xm parse. h>

XM._Parser XM__ParserCreate (const char *encodi ng);
void XM__ParserFree (XM__Parser p);

The argument encodi ng isoptional; we will use NULL in our binding.
After we have a parser, we must register its callback handlers:

XM__Set El ement Handl er (XM__Par ser p,
XM__St art El enent Handl er start,
XM__EndEl enent Handl er end);

XM._Set Char act er Dat aHandl er (XM_._Par ser p,
XM._Char act er Dat aHandl er hndl) ;

Page 342 of 351

The first function registers handlers for start and end elements. The second function registers handlers
for text (character data, in XML parlance).

All callback handlers receive some user data as their first parameter. The start-element handler receives
also the tag name and its attributes:

t ypedef void (*XM._StartEl enrent Handl er) (voi d *uDat a,
const char *nane,
const char **atts);

The attributes come as a NUL L -terminated array of strings, where each pair of consecutive strings holds
an attribute name and its value. The end-element handler has only one extra parameter, the tag name:

t ypedef void (*XM._EndEl enent Handl er) (voi d *uDat a,
const char *nane);

Finally, atext handler receives only the text as an extra parameter. This text string is not null-terminated,;
instead, it has an explicit length:

t ypedef void

(*XM__Char act er Dat aHandl er) (voi d *uDat a,
const char *s,
int len);

To feed text to Expat, we use the following function:

I nt XML_Parse (XM._Parser p,
const char *s, int len, int isFinal);

Expat receives the document to be parsed in pieces, through successive callsto XM._Par se. Thelast
argument to XML_ Par se, i sFi nal , informs Expat whether that piece isthe last one of a document.
Notice that each piece of text does not need to be zero terminated; instead, we supply an explicit length.
The XML_Par se function returns zero if it detects a parse error. (Expat provides auxiliary functions to
retrieve error information, but we will ignore them here, for the sake of simplicity.)

The last function we need from Expat allows us to set the user data that will be passed to the handlers:
void XM._Set UserData (XM._Parser p, void *uData);
Now let us have alook at how we can use thislibrary in Lua. A first approach is a direct approach:

Simply export all those functionsto Lua. A better approach is to adapt the functionality to Lua. For
Instance, because Luais untyped, we do not need different functions to set each kind of callback. Better

Page 343 of 351

yet, we can avoid the callback registering functions altogether. Instead, when we create a parser, we give
acallback table that contains all callback handlers, each with an appropriate key. For instance, if we
only want to print a layout of a document, we could use the following callback table:

| ocal count = 0

cal | backs = {
Start El enent = function (parser, tagnane)
lo.wite("+ ", string.rep(" ", count), tagnane, "\n")
count = count + 1

end,

EndEl ement = function (parser, tagnane)

count = count - 1

lo.wite("- ", string.rep(" ", count), tagnane, "\n")
end,

}

Fed with theinput " <t 0> <yes/ > </t 0o>", those handlers would print

+ to
+ yes
- yes
- to

With this API, we do not need functions to manipulate callbacks. We manipulate them directly in the
callback table. Thus, the whole API needs only three functions: one to create parsers, oneto parse a
piece of text, and oneto close a parser. (Actualy, we will implement the last two functions as methods
of parser objects.) A typical use of the API could belike this:

p = | xp. new cal | backs) -- Ccreate new parser

for I inio.lines() do -- iterate over input |ines
assert (p: parse(l)) -- parse the line
assert(p: parse("\n")) -- add a newine

end

assert (p: parse()) -- finish docunent

p: cl ose()

Now let us turn our attention to the implementation. The first decision is how to represent a parser in
Lua. Itisquite natural to use a userdatum, but what do we need to put inside it? At least, we must keep
the actual Expat parser and the callback table. We cannot store a Luatable inside a userdatum (or inside
any C structure); however, we can create a reference to the table and store the reference inside the

Page 344 of 351

userdatum. (Remember from Section 27.3.2 that areference is a Lua-generated integer key in the

registry.) Finaly, we must be able to store a Lua state into a parser object, because these parser objects
isall that an Expat callback receives from our program, and the callbacks need to call Lua. Therefore,
the definition for a parser object is as follows:

#i ncl ude <xnl parse. h>

t ypedef struct | xp _userdata {
| ua_State *L;
XM._Par ser *parser; /| * associ ated expat parser */
I nt tableref; /* table with call backs for this parser */
} | xp_userdat a;

The next step is the function that creates parser objects. Hereit is:

static int | xp_nmake parser (lua_State *L) {
XM._Par ser p;
| Xxp_userdata *xpu;

/* (1) create a parser object */
xpu = (I xp_userdata *)|l ua_newuserdat a(L,
si zeof (I xp_userdata));

/* pre-initialize it, in case of errors */
xpu- >t abl eref = LUA REFNI L;
Xpu->parser = NULL,

/[* set 1ts netatable */
| uaL_get net at abl e(L, "Expat");
| ua_setnetatable(L, -2);

/* (2) create the Expat parser */
p = xpu->parser = XM._Parser Create(NULL);
it (!p)

| ual_error(L, "XM._ParserCreate failed");

/* (3) create and store reference to call back table */
| uaL_checktype(L, 1, LUA TTABLE);

| ua_pushval ue(L, 1); /* put table on the stack top */
xpu->t abl eref = lualL_ref (L, LUA REG STRYI NDEX) ;

/* (4) configure Expat parser */
XM._Set User Dat a(p, Xpu);

Page 345 of 351

Thel

XM__Set El enent Handl er (p, f_StartEl enent, f_EndEl enent);
XM__Set Char act er Dat aHandl er (p, f_CharData);
return 1;

}

xp_rnake_par ser function hasfour main steps:

Its first step follows a common pattern: It first creates a userdatum; then it pre-initializes the
userdatum with consistent values; and finally sets its metatable. The reason for the pre-
initialization is subtle: If thereisany error during the initialization, we must make sure that the
findlizer (the ___gc metamethod) will find the userdata in a consistent state.

In step 2, the function creates an Expat parser, stores it in the userdatum, and checks for errors.

Step 3 ensures that the first argument to the function is actually atable (the callback table),
creates areference to it, and stores the reference into the new userdatum.

The last step initializes the Expat parser. It sets the userdatum as the object to be passed to
callback functions and it sets the callback functions. Notice that these callback functions are the
same for all parsers; after al, it isimpossible to dynamically create new functionsin C. Instead,
these fixed C functions will use the callback table to decide which Lua functions they should call
each time.

The next step isthe par se method, which parses a piece of XML data. It gets two arguments: The
parser object (the self of the method) and an optional piece of XML data. When called without any data,
it informs Expat that the document has no more parts:

static int |xp_parse (lua_State *L) {
I nt status;
size_t len;
const char *s;
| xp_userdata *xpu;

/* get and check first argunent (should be a parser) */
xpu = (I xp_userdata *)luaL_checkudata(L, 1, "Expat");
| uaL_argcheck(L, xpu, 1, "expat parser expected");

/* get second argunent (a string) */
s = luaL_optlstring(L, 2, NULL, & en);

/* prepare environnent for handlers: */
/* put callback table at stack index 3 */

Page 346 of 351

| ua_settop(L, 2);
| ua_getref (L, xpu->tableref);
Xxpu->L = L; [/* set Lua state */

/* call Expat to parse string */
status = XM._Parse(xpu->parser, s, (int)len, s == NULL);

/* return error code */
| ua_pushbool ean(L, status);
return 1;

}

When | xp_par se calls XM__Par se, the latter function will call the handlers for each relevant
element that it finds in the given piece of document. Therefore, | xp_par se first prepares an
environment for these handlers. There is one more detail in the call to XM._ Par se: Remember that the
last argument to this function tells Expat whether the given piece of text isthe last one. When we call
par se without an argument s will be NULL, so thislast argument will be true.

Now let us turn our attention to the callback functionsf _St art El enent ,f _EndEl enent , and
f _Char Dat a. All those three functions have a similar structure: Each checks whether the callback
table defines a Lua handler for its specific event and, if so, prepares the arguments and then calls that
Lua handler.

Let usfirst seethef _Char Dat a handler. Its code is quite simple. It callsits corresponding handler in
Lua (when present) with only two arguments: the parser and the character data (a string):

static void f_CharData (void *ud, const char *s, int len) {
| xp_userdata *xpu = (| xp_userdata *)ud,
| ua_State *L = xpu->L;

/* get handler */

| ua_pushstring(L, "CharacterData");

| ua_gettabl e(L, 3);

if (lua_isnil (L, -1)) { /* no handler? */
| ua_pop(L, 1);
return;

}

| ua_pushval ue(L, 1); [/* push the parser (self') */
| ua_pushl string(L, s, len); [/* push Char data */
lua call (L, 2, 0); [/* call the handler */

Page 347 of 351

Notice that all these C handlersrecelveal xp_user dat a structure astheir first argument, due to our
call to XML_Set User Dat a when we create the parser. Also notice how it uses the environment set by
| xp_par se. First, it assumes that the callback table is at stack index 3. Second, it assumes that the
parser itself isat stack index 1 (it must be there, because it should be the first argument to

| Xxp_par se).

Thef EndEl enent handler isalso simple and quitesimilar tof _Char Dat a. It also callsits
corresponding Lua handler with two arguments: the parser and the tag name (again a string, but now
null-terminated):

static void f_EndEl enent (void *ud, const char *nane) {
| xp_userdata *xpu = (| xp_userdata *)ud,
| ua_State *L = xpu->L;

| ua_pushstring(L, "EndEl enment");

| ua_gettabl e(L, 3);

if (lua_isnil (L, -1)) { /* no handler? */
| ua_pop(L, 1);
return;

}

| ua_pushval ue(L, 1); [/* push the parser (self') */
| ua_pushstring(L, nanme); /* push tag nanme */
lua call (L, 2, 0); [/* call the handler */

}

Thelast handler,f _St art El enent , calls Luawith three arguments: the parser, the tag name, and a
list of attributes. This handler is alittle more complex than the others, because it needs to trand ate the
tag'slist of attributes into Lua. We will use a quite natural translation. For instance, a start tag like

<to net hod="post" priority="high">
generates the following table of attributes:

{ method = "post", priority = "high" }
Theimplementation of f _St ar t El enent follows:

static void f_StartEl enment (void *ud,
const char *nane,
const char **atts) {
| xp_userdata *xpu = (I xp_userdata *)ud;

Page 348 of 351

| ua_State *L = xpu->L;

| ua_pushstring(L, "StartEl enent");

| ua_gettabl e(L, 3);

if (lua_isnil(L, -1)) { /* no handler? */
| ua_pop(L, 1);
return;

}

| ua_pushval ue(L, 1); [/* push the parser (self') */
| ua_pushstring(L, nanme); /* push tag nanme */

/* create and fill the attribute table */
| ua_newt abl e(L);
while (*atts) {

| ua_pushstring(L, *atts++);

| ua_pushstring(L, *atts++);

| ua_settabl e(L, -3);

}

lua call (L, 3, 0); [/* call the handler */
}

The last method for parsersiscl ose. When we close a parser, we have to free all its resources, namely
the Expat structure and the callback table. Remember that, due to occasional errors during its creation, a
parser may not have these resources:

static int | xp_close (lua_State *L) {
| xp_userdata *xpu;

xpu = (I xp_userdata *)lualL_checkudata(L, 1, "Expat");
| uaL_argcheck(L, xpu, 1, "expat parser expected");

/* free (unref) call back table */
| ual_unref (L, LUA REQ STRYI NDEX, xpu->tableref);
xpu- >t abl eref = LUA REFNI L;

/* free Expat parser (if there is one) */
i f (xpu->parser)

XM__Par ser Free(xpu- >par ser) ;
Xpu->parser = NULL,;
return O;

Page 349 of 351

Notice how we keep the parser in a consistent state as we close it, so there is no problem if wetry to
close it again or when the garbage collector finalizesit. Actually, we will use exactly this function as the
finalizer. That ensures that every parser eventually frees its resources, even if the programmer does not
closeit.

Thefina step isto open the library, putting all those parts together. We will use here the same scheme
that we used in the object-oriented array example (Section 28.3): We will create a metatable, put all
methods inside it, and makeits __ i ndex field point to itself. For that, we need alist with the parser
methods:

static const struct luaL reg I xp_nmeths[] = {

{"parse", |xp_parse},
{"close", |xp_close},
{" gc", |xp_close},

{NULL, NULL}
};

We aso need alist with the functions of thislibrary. Asis common with OO libraries, thislibrary has a
single function, which creates new parsers:

static const struct luaL reg | xp_funcs[] = {
{"new', | xp_nake parser},
{ NULL, NULL}

b

Finally, the open function must create the metatable, make it point to itself (through __ i ndex), and
register methods and functions:

i nt luaopen | xp (lua_State *L) {
/* create netatable */
| uaL_newnet at abl e(L, "Expat");

/* nmetatable. index = netatable */
| ua_pushliteral (L, " __index");

| ua_pushval ue(L, -2);

| ua_rawset (L, -3);

/* register nethods */
| uaL_openlib (L, NULL, |xp_neths, 0);

/* register functions (only | xp.new */

Page 350 of 351

lual_openlib (L, "Ixp", Ixp_funcs, 0);
return 1,

}

Programming in Lua

Page 351 of 351

	Contents
	Programming in Lua - contents

	Preface
	 Preface
	 Audience
	 Other Resources
	 A Few Typographical Conventions
	 About the Book
	 Acknowledgments

	1 - Getting Started
	 Getting Started
	 Chunks
	 Global Variables
	Some Lexical Conventions
	The Stand-Alone Interpreter

	2 - Types and Values
	Types and Values
	Nil
	Booleans
	Numbers
	Strings
	Tables
	Functions
	Userdata and Threads

	3 - Expressions
	Expressions
	Arithmetic Operators
	Relational Operators
	Logical Operators
	Concatenation
	Precedence
	- Table Constructors

	4 - Statements
	Statements
	Assignment
	Local Variables and Blocks
	Control Structures
	if then else
	while
	- repeat
	Numeric for
	Generic for
	break and return

	5 - Functions
	Functions
	Multiple Results
	Variable Number of Arguments
	Named Arguments

	6 - More about Functions
	More about Functions
	Closures
	Non-Global Functions
	Proper Tail Calls

	7 - Iterators and the Generic for
	Iterators and the Generic for
	Iterators and Closures
	The Semantics of the Generic for
	Stateless Iterators
	Iterators with Complex State
	True Iterators

	8 - Compilation, Execution, and Errors
	Compilation, Execution, and Errors
	The require Function
	C Packages
	Errors
	Error Handling and Exceptions
	Error Messages and Tracebacks

	9 - Coroutines
	Coroutines
	Coroutine Basics
	Pipes and Filters
	Coroutines as Iterators
	Non-Preemptive Multithreading

	10 - Complete Examples
	Complete Examples
	Data Description
	Markov Chain Algorithm

	11 - Data Structures
	Data Structures
	Arrays
	Matrices and Multi-Dimensional Arrays
	Linked Lists
	Queues and Double Queues
	Sets and Bags
	String Buffers

	12 - Data Files and Persistence
	Data Files and Persistence
	Serialization
	Saving Tables without Cycles
	Saving Tables with Cycles

	13 - Metatables and Metamethods
	Metatables and Metamethods
	Arithmetic Metamethods
	Relational Metamethods
	Library-Defined Metamethods
	Table-Access Metamethods
	The __index Metamethod
	The __newindex Metamethod
	Tables with Default Values
	Tracking Table Accesses
	Read-Only Tables

	14 - The Environment
	The Environment
	Accessing Global Variables with Dynamic Names
	Declaring Global Variables
	Non-Global Environments

	15 - Packages
	Packages
	The Basic Approach
	Privacy
	Packages and Files
	Using the Global Table
	Other Facilities

	16 - Object-Oriented Programming
	Object-Oriented Programming
	Classes
	Inheritance
	Multiple Inheritance
	Privacy
	The Single-Method Approach

	17 - Weak Tables
	Weak Tables
	Memoize Functions
	Object Attributes
	Revisiting Tables with Default Values

	18 - The Mathematical Library
	The Mathematical Library

	19 - The Table Library
	The Table Library
	Array Size
	Insert and Remove
	Sort

	20 - The String Library
	The String Library
	Pattern-Matching Functions
	Patterns
	Captures
	Tricks of the Trade

	21 - The I/O Library
	The I/O Library
	The Simple I/O Model
	The Complete I/O Model
	- A Small Performance Trick
	Binary Files
	Other Operations on Files

	22 - The Operating System Library
	The Operating System Library
	Date and Time
	Other System Calls

	23 - The Debug Library
	The Debug Library
	Introspective Facilities
	Accessing Local Variables
	Accessing Upvalues
	Hooks
	Profiles

	24 - An Overview of the C API
	An Overview of the C API
	A First Example
	The Stack
	Pushing Elements
	Querying Elements
	Other Stack Operations
	Error Handling with the C API
	Error Handling in Application Code
	Error Handling in Library Code

	25 - Extending your Application
	Extending your Application
	Table Manipulation
	Calling Lua Functions
	A Generic Call Function

	26 - Calling C from Lua
	Calling C from Lua
	C Functions
	C Libraries

	27 - Techniques for Writing C Functions
	Techniques for Writing C Functions
	Array Manipulation
	String Manipulation
	Storing State in C Functions
	The Registry
	References
	Upvalues

	28 - User-Defined Types in C
	User-Defined Types in C
	Userdata
	Metatables
	Object-Oriented Access
	Array Access
	Light Userdata

	29 - Managing Resources
	Managing Resources
	A Directory Iterator
	An XML Parser

